全文获取类型
收费全文 | 2485篇 |
免费 | 7篇 |
国内免费 | 6篇 |
专业分类
航空 | 1220篇 |
航天技术 | 999篇 |
综合类 | 5篇 |
航天 | 274篇 |
出版年
2021年 | 13篇 |
2019年 | 14篇 |
2018年 | 41篇 |
2017年 | 34篇 |
2016年 | 25篇 |
2015年 | 11篇 |
2014年 | 50篇 |
2013年 | 62篇 |
2012年 | 50篇 |
2011年 | 87篇 |
2010年 | 62篇 |
2009年 | 105篇 |
2008年 | 150篇 |
2007年 | 62篇 |
2006年 | 46篇 |
2005年 | 62篇 |
2004年 | 73篇 |
2003年 | 91篇 |
2002年 | 46篇 |
2001年 | 101篇 |
2000年 | 45篇 |
1999年 | 86篇 |
1998年 | 85篇 |
1997年 | 62篇 |
1996年 | 63篇 |
1995年 | 88篇 |
1994年 | 97篇 |
1993年 | 37篇 |
1992年 | 59篇 |
1991年 | 22篇 |
1990年 | 28篇 |
1989年 | 56篇 |
1988年 | 20篇 |
1987年 | 35篇 |
1986年 | 21篇 |
1985年 | 74篇 |
1984年 | 42篇 |
1983年 | 47篇 |
1982年 | 55篇 |
1981年 | 77篇 |
1980年 | 26篇 |
1979年 | 24篇 |
1978年 | 22篇 |
1977年 | 18篇 |
1976年 | 15篇 |
1975年 | 18篇 |
1974年 | 12篇 |
1972年 | 17篇 |
1969年 | 13篇 |
1966年 | 8篇 |
排序方式: 共有2498条查询结果,搜索用时 15 毫秒
61.
T.B. Leyser 《Space Science Reviews》2001,98(3-4):223-328
A high frequency electromagnetic pump wave transmitted into the ionospheric plasma from the ground can stimulate electromagnetic radiation with frequencies around that of the ionospherically reflected pump wave. The numerous spectral features of these stimulated electromagnetic emissions (SEE) and their temporal evolution on a wide range of time scales are reviewed and related theoretical, numerical, and simulation results are discussed. On long (thermal) time scales the SEE constitutes a self-organization of the ionospheric plasma which depends on the interaction of nonlinear processes in a hierarchy of time scales in response to the electromagnetic pumping. Particularly, the appearance of the rich SEE spectrum is associated with the slow self-structuring of the plasma density into a spectrum of magnetic field-aligned density striations. The dependence of the SEE on electron gyroharmonic effects and the presence of density striations suggests that the existence of a magnetic field in the plasma is important for plasma turbulence to dissipate into non-thermal electromagnetic radiation during the long time quasi-stationary state of the turbulence evolution. 相似文献
62.
T.E. Moore M.O. Chandler M.-C. Fok B.L. Giles D.C. Delcourt J.L. Horwitz C.J. Pollock 《Space Science Reviews》2001,95(1-2):555-568
The discovery of terrestrial O+ and other heavy ions in magnetospheric hot plasmas, combined with the association of energetic ionospheric outflows with geomagnetic activity, led to the conclusion that increasing geomagnetic activity is responsible for filling the magnetosphere with ionospheric plasma. Recently it has been discovered that a major source of ionospheric heavy ion plasma outflow is responsive to the earliest impact of coronal mass ejecta upon the dayside ionosphere. Thus a large increase in ionospheric outflows begins promptly during the initial phase of geomagnetic storms, and is already present during the main phase development of such storms. We hypothesize that enhancement of the internal source of plasma actually supports the transition from substorm enhancements of aurora to storm-time ring current development in the inner magnetosphere. Other planets known to have ring current-like plasmas also have substantial internal sources of plasma, notably Jupiter and Saturn. One planet having a small magnetosphere, but very little internal source of plasma, is Mercury. Observations suggest that Mercury has substorms, but are ambiguous with regard to the possibility of magnetic storms of the planet. The Messenger mission to Mercury should provide an interesting test of our hypothesis. Mercury should support at most a modest ring current if its internal plasma source is as small as is currently believed. If substantiated, this hypothesis would support a general conclusion that the magnetospheric inflationary response is a characteristic of magnetospheres with substantial internal plasma sources. We quantitatively define this hypothesis and pose it as a problem in comparative magnetospheres. 相似文献
63.
D. Koschny V. Dhiri K. Wirth J. Zender R. Solaz R. Hoofs R. Laureijs T.-M Ho B. Davidsson G. Schwehm 《Space Science Reviews》2007,128(1-4):167-188
ESA’s Rosetta mission was launched in March 2004 and is on its way to comet 67P/Churyumov-Gerasimenko, where it is scheduled
to arrive in summer 2014. It comprises a payload of 12 scientific instruments and a Lander. All instruments are provided by
Principal Investigators, which are responsible for their operations.
As for most ESA science missions, the ground segment of the mission consists of a Mission Operations Centre (MOC) and a Science
Operations Centre (SOC). While the MOC is responsible for all spacecraft-related aspects and the final uplink of all command
timelines to the spacecraft, the scientific operations of the instruments and the collection of the data and ingestion into
the Planetary Science Archive are coordinated by the SOC. This paper focuses on the tasks of the SOC and in particular on
the methodology and constraints to convert the scientific goals of the Rosetta mission to operational timelines. 相似文献
64.
Rice M. Oliphant T. Haddadin O. McIntire W. 《IEEE transactions on aerospace and electronic systems》2007,43(4):1484-1495
This paper describes data-aided signal level and noise variance estimators for Gaussian minimum shift keying (GMSK) when the observations are limited to the output of a filter matched to the first pulse-amplitude modulation (PAM) pulse in the equivalent PAM representation. The estimators are based on the maximum likelihood (ML) principle and assume burst-mode transmission with known timing and a block of L0 known bits. While it is well known that ML estimators are asymptotically unbiased and efficient, the analysis quantifies the rate at which the estimators approach these asymptotic properties. It is shown that the carrier phase, amplitude, and noise variance estimators are unbiased and can achieve their corresponding Cramer-Rao bounds with modest combinations of signal-to-noise ratio and observation length. The estimates are used to estimate the signal-to-noise ratio. It is shown that the mean squared error performance of the ratio increases with signal-to-noise ratio while the mean squared error performance of the ratio in decibels decreases with signal-to-noise ratio. Simulation results are provided to confirm the accuracy of the analytic results. 相似文献
65.
J.T. Rudd D.M. Oliveira A. Bhaskar A.J. Halford 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):317-326
In this paper, we investigate temporal and spatial magnetosphere response to the impact of interplanetary (IP) shocks with different inclinations and speeds on the Earth’s magnetosphere. A data set with more than 500 IP shocks is used to identify positive sudden impulse (SI+) events as expressed by the SuperMAG partial ring current index. The SI+ rise time (RT), defined as the time interval between compression onset and maximum SI+ signature, is obtained for each event. We use RT and a model suggested by Takeuchi et al. (2002) to calculate the geoeffective magnetospheric distance (GMD) in the shock propagation direction as a function of shock impact angle and speed for each event. GMD is a generalization of the geoeffective magnetosphere length (GML) suggested by Takeuchi et al. (2002), defined from the subsolar point along the X line toward the tail. We estimate statistical GMD and GML values which are then reported for the first time. We also show that, similarly to well-known results for RT, the highest correlation coefficient for the GMD and impact angle is found for shocks with high speeds and small impact angles, and the faster and more frontal the shock, the smaller the GMD. This result indicates that the magnetospheric response depends heavily on shock impact angle. With these results, we argue that the prediction and forecasting of space weather events, such as those caused by coronal mass ejections, will not be accurately accomplished if the disturbances’ angles of impact are not considered as an important parameter within model and observation scheme capabilities. 相似文献
66.
C.J. Hailey T. Aramaki S.E. Boggs P.v. Doetinchem H. Fuke F. Gahbauer J.E. Koglin N. Madden S.A.I. Mognet R. Ong T. Yoshida T. Zhang J.A. Zweerink 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS. 相似文献
67.
T.L. Gulyaeva F. Arikan I. Stanislawska L.V. Poustovalova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Variations of the ionospheric weather W-index for two midlatitude observatories, namely, Grahamstown and Hermanus, and their conjugate counterpart locations in Africa are studied for a period from October 2010 to December 2011. The observatories are located in the longitude sector, which has consistent magnetic equator and geographic equator so that geomagnetic latitudes of the line of force are very close to the corresponding geographic latitudes providing opportunity to ignore the impact of the difference of the gravitational field and the geomagnetic field at the conjugate points on the ionosphere structure and dynamics. The ionosondes of Grahamstown and Hermanus provide data of the critical frequency (foF2), and Global Ionospheric Maps (GIM) provide the total electron content (TECgps) along the magnetic field line up to the conjugate point in the opposite hemisphere. The global model of the ionosphere, International Reference Ionosphere, extended to the plasmasphere altitude of 20,200 km (IRI-Plas) is used to deliver the F2 layer peak parameters from TECgps at the magnetic conjugate area. The evidence is obtained that the electron gas heated by day and cooled by night at the summer hemisphere as compared with the opposite features in the conjugate winter hemisphere testifies on a reversal of plasma fluxes along the magnetic field line by the solar terminator. The ionospheric weather W-index is derived from NmF2 (related with foF2) and TECgps data. It is found that symmetry of W-index behavior in the magnetic conjugate hemispheres is dominant for the equinoxes when plasma movement along the magnetic line of force is imposed on symmetrical background electron density and electron content. Asymmetry of the ionospheric storm effects is observed for solstices when the plasma diffuse down more slowly into the colder winter hemisphere than into the warmer summer hemisphere inducing either plasma increase (positive phase) or decrease (negative phase of W-index) in the ionospheric and plasmaspheric plasma density. 相似文献
68.
V. Satya Srinivas A.D. Sarma K.C.T. Swamy K. Satyanarayana 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
International Reference Ionosphere (IRI) model is the widely used empirical model for ionospheric predictions, especially TEC which is an important parameter for radio navigation and communication. The Fortran based IRI-2007 does not support real-time interactive visualization and debugging. Therefore, the source code is converted into Matlab and is validated for the purposes of this study. This facilitates easy representation of results and for near real-time implementation of IRI in the applications including spacecraft launching, now casting, pseudolite based navigation systems etc. In addition, the vertical delay results over the equatorial region derived from IRI and GPS data of three IGS stations namely Libreville (Garbon, Africa), Brasilia (Brazil, South America) and Hyderabad (India, Asia) are compared. As the IRI model does not account for plasmasphere TEC, the vertical delays are underestimated compared to vertical delays of GPS signals. Therefore, the model should be modified accordingly for precise TEC estimation. 相似文献
69.
A.B. Waye R.G. Krygiel T.B. Susin R. Baptista L. Rehnberg G.S. Heidner F. de Campos F.P. Falcão T. Russomano 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel. 相似文献
70.
J.S. Kaastra R. Lieu T. Tamura F.B.S. Paerels J.W. den Herder 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2504-2508
We discuss the detection of soft excess X-ray emission in a sample of 19 clusters of galaxies observed by XMM-Newton. In 6/19 clusters evidence for a soft X-ray excess is found. Four of these clusters show soft X-ray and O VII line emission from gas with a temperature of 0.2 keV. The centroid of this oxygen line is consistent with the redshift of the cluster. The intensity and spatial extend of the soft excess agrees with previous PSPC measurements. These observations are interpreted as emission from warm-hot intergalactic medium filaments, with density enhancements near the cluster centers, consistent with theoretical predictions. In the other two soft excess clusters a non-thermal origin is consistent with the data. 相似文献