全文获取类型
收费全文 | 2489篇 |
免费 | 3篇 |
国内免费 | 5篇 |
专业分类
航空 | 1221篇 |
航天技术 | 997篇 |
综合类 | 5篇 |
航天 | 274篇 |
出版年
2021年 | 13篇 |
2019年 | 14篇 |
2018年 | 41篇 |
2017年 | 34篇 |
2016年 | 25篇 |
2015年 | 11篇 |
2014年 | 50篇 |
2013年 | 62篇 |
2012年 | 50篇 |
2011年 | 87篇 |
2010年 | 62篇 |
2009年 | 105篇 |
2008年 | 149篇 |
2007年 | 62篇 |
2006年 | 46篇 |
2005年 | 62篇 |
2004年 | 71篇 |
2003年 | 91篇 |
2002年 | 46篇 |
2001年 | 101篇 |
2000年 | 45篇 |
1999年 | 86篇 |
1998年 | 85篇 |
1997年 | 62篇 |
1996年 | 63篇 |
1995年 | 88篇 |
1994年 | 97篇 |
1993年 | 37篇 |
1992年 | 59篇 |
1991年 | 23篇 |
1990年 | 28篇 |
1989年 | 56篇 |
1988年 | 20篇 |
1987年 | 35篇 |
1986年 | 21篇 |
1985年 | 74篇 |
1984年 | 42篇 |
1983年 | 47篇 |
1982年 | 55篇 |
1981年 | 77篇 |
1980年 | 26篇 |
1979年 | 24篇 |
1978年 | 22篇 |
1977年 | 18篇 |
1976年 | 15篇 |
1975年 | 18篇 |
1974年 | 12篇 |
1972年 | 17篇 |
1969年 | 13篇 |
1966年 | 8篇 |
排序方式: 共有2497条查询结果,搜索用时 15 毫秒
201.
Recent works on magnetic signatures due to distant lightning discharges are reviewed. Emphasis is laid on magnetic signatures in the ULF range (in the old definition from less than 1 mHz up to 1 Hz), that is in the frequency range below the Schumann resonance. These signatures are known to be of importance for the excitation of the ionospheric Alfvén resonator (IAR) which works only at night time conditions. This emphasizes the difference between night and day time ULF signatures of lightning. The IAR forms a link between the atmosphere and magnetosphere. Similarities and differences of this link in the VLF (Trimpi effect) and ULF range are worked out. A search for a unique signature of sprite-associated positive cloud-to-ground (+CG) lightning discharges ended with a negative result. In this context, however, a new model of lightning-associated induced mesospheric currents was built. Depending on mesospheric condition it can produce magnetic signatures in the entire frequency range from VLF, ELF to ULF. In the latter case it can explain signatures known as the Ultra Slow Tail of +CG lightning discharges. A current problem on the magnetic background noise intensity has been solved by taking more seriously the contribution of +CG lightning discharges to the overall background noise. Their low occurrence rate is more than compensated by their large and long lasting continuing currents. By superposed epoch analysis it could be shown that the ULF response to ?CG is one to two orders smaller that in case of +CG with similar peak current values of the return stroke. 相似文献
202.
Sandel B.R. Broadfoot A.L. Curtis C.C. King R.A. Stone T.C. Hill R.H. Chen J. Siegmund O.H.W. Raffanti R. Allred DAVID D. Turley R. STEVEN Gallagher D.L. 《Space Science Reviews》2000,91(1-2):197-242
The Extreme Ultraviolet Imager (EUV) of the IMAGE Mission will study the distribution of He+ in Earth's plasmasphere by detecting its resonantly-scattered emission at 30.4 nm. It will record the structure and dynamics of the cold plasma in Earth's plasmasphere on a global scale. The 30.4-nm feature is relatively easy to measure because it is the brightest ion emission from the plasmasphere, it is spectrally isolated, and the background at that wavelength is negligible. Measurements are easy to interpret because the plasmaspheric He+ emission is optically thin, so its brightness is directly proportional to the He+ column abundance. Effective imaging of the plasmaspheric He+ requires global `snapshots in which the high apogee and the wide field of view of EUV provide in a single exposure a map of the entire plasmasphere. EUV consists of three identical sensor heads, each having a field of view 30° in diameter. These sensors are tilted relative to one another to cover a fan-shaped field of 84°×30°, which is swept across the plasmasphere by the spin of the satellite. EUVs spatial resolution is 0.6° or 0.1 RE in the equatorial plane seen from apogee. The sensitivity is 1.9 count s–1 Rayleigh–1, sufficient to map the position of the plasmapause with a time resolution of 10 min. 相似文献
203.
Stark L. Tendick F. Kim W. Anderson R. Hisey M. Mills B. Matsunaga K. An Nguyen Ramos C. Tyler M. Zahalak G. Amick M. Baker B. Brown N. Brown T. Chang J. Jyh-Horng Chen Chik J. Cohen D. Cox D. Dubey J. Ellis K. Engdahl E. Frederickson C. Halamka J. Hauser R. Jacobs J. Lee C. Lee D. Liu A. Ninomiya R. Rudolph J. Schafer S. Schendel E. So G. Takeda M. Tam L. Thompson M. Wood E. Woodruff T. 《IEEE transactions on aerospace and electronic systems》1988,24(5):542-551
With major emphasis on simulation, a university laboratory telerobotics facility permits problems to be approached by groups of graduate students. Helmet-mounded displays provide realism; the slaving of the display to the human operator's viewpoint gives a sense of `telepresence' that may be useful for prolonged tasks. Using top-down 3-D model control of distant images allows distant images to be reduced to a few parameters to update the model used for display to the human operator in a preview model to circumvent, in part, the communication delay. Also, the model can be used as a format for supervisory control and permit short-term local autonomous operations. Image processing algorithms can be made simpler and faster without trying to construct sensible images from the bottom. Control studies of telerobots lead to preferential manual control modes and, in this university environment, to basic paradigms for human motion and thence, perhaps, to redesign of robotic control, trajectory path planning, and rehabilitation prosthetics. Speculation as to future industrial drives for this telerobotic field suggests efficient roles for government agencies such as NASA 相似文献
204.
Jurewicz A.J.G. Burnett D.S. Wiens R.C. Friedmann T.A. Hays C.C. Hohlfelder R.J. Nishiizumi K. Stone J.A. Woolum D.S. Becker R. Butterworth A.L. Campbell A.J. Ebihara M. Franchi I.A. Heber V. Hohenberg C.M. Humayun M. McKeegan K.D. McNamara K. Meshik A. Pepin R.O. Schlutter D. Wieler R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be
exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure
materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’),
with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically
placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection.
Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for
solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector
arrays and elsewhere targeted for the analyses of specific solar-wind components.
Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the
ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface
and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability.
A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis
website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma
data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community
throughout the 21st Century.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
205.
D. J. McComas J. L. Phillips S. J. Bame J. T. Gosling B. E. Goldstein M. Neugebauer 《Space Science Reviews》1995,72(1-2):93-98
In the 25 months since Jupiter flyby, the Ulysses spacecraft has climbed southward to a heliolatitude of 56°. This transit has been marked by an evolution from slow, dense coronal streamer belt solar wind through two regions where the rotation of the Sun carried Ulysses back and forth between streamer belt and polar coronal hole flows, and finally into a region of essentially continuous fast, low density solar wind from the southern polar coronal hole. Throughout these large changes, the momentum flux normalized to 1 AU displays very little systematic variation. In addition, the bulk properties of the polar coronal hole solar wind are quite similar to those observed in high speed streams in the ecliptic plane at 1 AU. Coronal mass ejections and forward and reverse shocks associated with corotating interaction regions have also been observed at higher heliolatitudes, however they are seen less frequently with increasing southern heliolatitude. Ulysses has thus far collected data from 20° of nearly contiguous solar wind flows from the polar coronal hole. We examine these data for characteristic variations with heliolatitude and find that the bulk properties in general show very little systematic variation across the southern polar coronal hole so far. 相似文献
206.
Burns T.J. Rogers S.K. Oxley M.E. Ruck D.W. 《IEEE transactions on aerospace and electronic systems》1996,32(2):628-649
The wavelet filters of the conventional 3D multiresolution analysis possess homogeneous spatial and temporal frequency characteristics which limits one's ability to match filter frequency characteristics to signal frequency behavior. Also, the conventional 3D multiresolution analysis employs an oct-tree decomposition structure which restricts the analysis of signal details to identical resolutions in space and time. This paper presents a 3D wavelet multiresolution analysis constructed from nonhomogeneous spatial and temporal filters, and an orthogonal sub-band coding scheme that decouples the spatial and temporal decomposition processes 相似文献
207.
Parameters of expanding magnetic loops and arches and of mass flows generated by them in the corona have been computed in a 1D two-fluid approximation. Two possible trigger mechanisms of the coronal transients have been considered: (i) sudden increase of the background magnetic field strength, and (ii) heating and compression plasma inside these magnetic structures. We discuss the formation of shock waves and their dependence on dynamics and geometry of the magnetic structures. 相似文献
208.
R. Aceti G. Annoni F. Dalla Vedova T. Lupi G. D. Morea P. Sabatini V. De Cosmo F. Voila 《Acta Astronautica》2003,52(9-12):727-732
209.
The martian surface environment exhibits extremes of salinity, temperature, desiccation, and radiation that would make it difficult for terrestrial microbes to survive. Recent evidence suggests that martian soils contain high concentrations of MgSO? minerals. Through warming of the soils, meltwater derived from subterranean ice-rich regolith may exist for an extended period of time and thus allow the propagation of terrestrial microbes and create significant bioburden at the near surface of Mars. The current report demonstrates that halotolerant bacteria from the Great Salt Plains (GSP) of Oklahoma are capable of growing at high concentrations of MgSO? in the form of 2 M solutions of epsomite. The epsotolerance of isolates in the GSP bacterial collection was determined, with 35% growing at 2 M MgSO?. There was a complex physiological response to mixtures of MgSO? and NaCl coupled with other environmental stressors. Growth also was measured at 1 M concentrations of other magnesium and sulfate salts. The complex responses may be partially explained by the pattern of chaotropicity observed for high-salt solutions as measured by agar gelation temperature. Select isolates could grow at the high salt concentrations and low temperatures found on Mars. Survival during repetitive freeze-thaw or drying-rewetting cycles was used as other measures of potential success on the martian surface. Our results indicate that terrestrial microbes might survive under the high-salt, low-temperature, anaerobic conditions on Mars and present significant potential for forward contamination. Stringent planetary protection requirements are needed for future life-detection missions to Mars. 相似文献
210.
J. Watermann P. Stauning H. Lühr P.T. Newell F. Christiansen K. Schlegel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
We examined some 75 observations from the low-altitude Earth orbiting DMSP, Ørsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation (“particle cusp”) and intense small-scale magnetic field variations (“current cusp”), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms (“statistical cusp”). 相似文献