首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2763篇
  免费   2篇
  国内免费   10篇
航空   1364篇
航天技术   1069篇
综合类   6篇
航天   336篇
  2021年   25篇
  2019年   23篇
  2018年   68篇
  2017年   50篇
  2016年   26篇
  2015年   17篇
  2014年   52篇
  2013年   70篇
  2012年   61篇
  2011年   103篇
  2010年   73篇
  2009年   115篇
  2008年   155篇
  2007年   70篇
  2006年   50篇
  2005年   79篇
  2004年   77篇
  2003年   96篇
  2002年   48篇
  2001年   111篇
  2000年   49篇
  1999年   92篇
  1998年   88篇
  1997年   67篇
  1996年   64篇
  1995年   94篇
  1994年   103篇
  1993年   39篇
  1992年   63篇
  1991年   22篇
  1990年   28篇
  1989年   59篇
  1988年   20篇
  1987年   35篇
  1986年   20篇
  1985年   82篇
  1984年   56篇
  1983年   50篇
  1982年   60篇
  1981年   93篇
  1980年   27篇
  1979年   25篇
  1978年   24篇
  1977年   18篇
  1976年   15篇
  1975年   18篇
  1974年   12篇
  1972年   17篇
  1969年   13篇
  1966年   8篇
排序方式: 共有2775条查询结果,搜索用时 31 毫秒
61.
Gamma-Ray Astronomy, originated with the OSO-3, SAS-2 and COS-B satellites, has been renewed during the last three years by Compton-GRO's discovery of tens of Galactic and extra-galactic sources up to 10 GeV. Also in the last three years, a ground-based observing technique has emerged for TeV gamma rays: the identification of gamma-induced air showers via their Cerenkov emission. Extrapolating this technique down to the present limit of satellite observations has become a realistic goal, allowing fundamental questions to be tackled which would remain open until the individual spectra were extended.  相似文献   
62.
At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants--rice, soybean, lettuce and strawberry--were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the above mentioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.  相似文献   
63.
To investigate changes in spatial orientation ability and walking performance following space flight, 7 astronaut subjects were asked pre- and post-flight to perform a goal directed locomotion paradigm which consisted of walking a triangular path with and without vision. This new paradigm, involving inputs from different sensory systems, allows quantification of several critical parameters, like orientation performance, walking velocities and postural stability, in a natural walking task. The paper presented here mainly focusses on spatial orientation performance quantified by the errors in walking the previously seen path without vision. Errors in length and reaching the corners did not change significantly from pre- to post-flight, while absolute angular errors slightly increased post-flight. The significant decrease in walking velocity and a change in head-trunk coordination while walking around the corners of the path observed post-flight may suggest that during re-adaptation to gravity the mechanisms which are necessary to perform the task have to be re-accomplished.  相似文献   
64.
The current state of space life sciences knowledge and research is described. Findings about the health of astronauts in space are reviewed and a plea is made by some former astronauts to increase the amount of research being conducted. Longitudinal studies of the long term effects of space travel, especially radiation exposure, are being conducted and have yet to show any ill effects. Current research focuses are discussed, including Neurolab, an upcoming shuttle mission devoted to neurological and vestibular research. Experiment and spacecraft hardware is discussed, as are future directions in research. Partnership with Russian space life sciences investigators is also underway.  相似文献   
65.
An overview is given of ISO results on regions of high excitation ISM and gas, i.e. HII regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic capabilities illustrated and their implications highlighted. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   
66.
Despite its usefulness, the Kalman-Bucy filter is not perfect. One of its weaknesses is that it needs a Gaussian assumption on the initial data. Recently Yau and Yau introduced a new direct method to solve the estimation problem for linear filtering with non-Gaussian initial data. They factored the problem into two parts: (1) the on-line solution of a finite system of ordinary differential equations (ODEs), and (2) the off-line calculation of the Kolmogorov equation. Here we derive an explicit closed-form solution of the Kolmogorov equation. We also give some properties and conduct a numerical study of the solution.  相似文献   
67.
Two energetic events in the Earth’s magnetotail detected by Geotail are examined with detailed analysis of three-dimensional velocity phase space density. It is found that the occurrence of multiple ion components is high during these dynamic episodes. Different populations evolve independently of each other, suggesting particles from multiple activity sites contributing to the observed phase space density. The transport properties with consideration of multiple components are evaluated, with the result showing significant differences from those based on a single fluid approach. This comparison indicates that precise evaluation of the energy and magnetic flux transport of energetic events in the magnetotail requires resolving individual populations in the phase space density.  相似文献   
68.
On the giant planets and Titan, like on the terrestrial planets, aerosols play an important part in the physico-chemistry of the upper atmosphere (P ≤ 0.5 bar). Above all, aerosols significantly affect radiative transfer processes, mainly through light scattering, thus influencing the atmospheric energy budget and dynamics. Because there is usually significant coupling between atmospheric circulation and haze production, aerosols may constitute useful tracers of atmospheric dynamics.More generally, since their production is directly linked to some kind of energy deposition, their study may also provide clues to external sources of energy as well as their variability. Finally, aerosols indirectly influence other processes such as cloud formation and disequilibrium chemistry, by acting either as condensation nuclei or as reaction sites for surface chemistry. Here, I present a review of observational and modeling results based on remote sensing data, and also some insights derived from laboratory simulations. Despite our knowledge of the effects of aerosols in outer planetary atmospheres, however, relatively little is understood about the pathways which produce them, either endogenously (as end-products of gas-phase photochemical or shock reactions) or exogenously (as residues of meteroid ablation).  相似文献   
69.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
70.
In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape – irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ∼14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ∼7×1013 kg assuming a bulk density of 500 kg m−3. As these are working values, {i.e.}, based on preliminary analyses, it is expected that adjustments to their values may be made before encounter as improved estimates become available through further analysis of the large database being made available by the Deep Impact observing campaign. Given the parameters listed above the impact will occur in an environment where the local gravity is estimated at 0.027–0.04 cm s−2 and the escape velocity between 1.4 and 2 m s−1. For both of the rotation poles found here, the Deep Impact spacecraft on approach to encounter will find the rotation axis close to the plane of the sky (aspect angles 82.2 and 69.7 deg. for pole 1 and 2, respectively). However, until the rotation period estimate is substantially improved, it will remain uncertain whether the impactor will collide with the broadside or the ends of the nucleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号