首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5631篇
  免费   5篇
  国内免费   15篇
航空   2608篇
航天技术   2130篇
综合类   15篇
航天   898篇
  2021年   39篇
  2018年   85篇
  2017年   70篇
  2016年   58篇
  2015年   29篇
  2014年   100篇
  2013年   144篇
  2012年   125篇
  2011年   213篇
  2010年   148篇
  2009年   229篇
  2008年   291篇
  2007年   146篇
  2006年   107篇
  2005年   160篇
  2004年   165篇
  2003年   199篇
  2002年   111篇
  2001年   197篇
  2000年   99篇
  1999年   158篇
  1998年   165篇
  1997年   126篇
  1996年   120篇
  1995年   176篇
  1994年   198篇
  1993年   90篇
  1992年   119篇
  1991年   51篇
  1990年   65篇
  1989年   118篇
  1988年   46篇
  1987年   57篇
  1986年   54篇
  1985年   173篇
  1984年   141篇
  1983年   126篇
  1982年   125篇
  1981年   206篇
  1980年   55篇
  1979年   56篇
  1978年   52篇
  1977年   46篇
  1976年   41篇
  1975年   49篇
  1974年   39篇
  1973年   36篇
  1972年   58篇
  1970年   29篇
  1969年   31篇
排序方式: 共有5651条查询结果,搜索用时 171 毫秒
211.
Long-term survival of bacterial spores in space.   总被引:8,自引:0,他引:8  
On board of the NASA Long Duration Exposure Facility (LDEF), spores of Bacillus subtilis in monolayers (10(6)/sample) or multilayers (10(8)/sample) were exposed to the space environment for nearly six years and their survival was analyzed after retrieval. The response to space parameters, such as vacuum (10(-6) Pa), solar electromagnetic radiation up to the highly energetic vacuum-ultraviolet range (10(9) J/m2) and/or cosmic radiation (4.8 Gy), was studied and compared to the results of a simultaneously running ground control experiment. If shielded against solar ultraviolet (UV)-radiation, up to 80 % of spores in multilayers survive in space. Solar UV-radiation, being the most deleterious parameter of space, reduces survival by 4 orders of magnitude or more. However, up to 10(4) viable spores were still recovered, even in completely unprotected samples. Substances, such as glucose or buffer salts serve as chemical protectants. With this 6 year study in space, experimental data are provided to the discussion on the likelihood of "Panspermia".  相似文献   
212.
We investigate properties of large (>20%) and sharp (<10 min) solar wind ion flux changes using INTERBALL-1 and WIND plasma and magnetic field measurements from 1996 to 1999. These ion flux changes are the boundaries of small-scale and middle-scale solar wind structures. We describe the behavior of the solar wind velocity, temperature and interplanetary magnetic field (IMF) during these sudden flux changes. Many of the largest ion flux changes occur during periods when the solar wind velocity is nearly constant, so these are mainly plasma density changes. The IMF magnitude and direction changes at these events can be either large or small. For about 55% of the ion flux changes, the sum of the thermal and magnetic pressure are in balance across the boundary. In many of the other cases, the thermal pressure change is significantly more than the magnetic pressure change. We also attempted to classify the types of discontinuities observed.  相似文献   
213.
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux.  相似文献   
214.
The picture of an exponentially increasing, “inflationary” phase of the early universe (Guth 1981; Linde 1982; Albrecht and Steinhardt 1982) may point the way to an understanding of our present universe without reference to extremely specific initial conditions. The model rests, however, on several assumptions which deserve critical examination.  相似文献   
215.
The northward and southward orientation of the interplanetary magnetic field (IMF) is usually considered as providing the external boundary conditions in the solar wind interaction with the Earth's magnetopause but it is the magnetic field in the magnetosheath that interacts with the Earth's magnetic field. In this paper, we consider the possibility that the wave activity in the foreshock region may affect the magnetic field orientation in the magnetosheath with time scales that might be geomagnetically effective. If magnetosheath magnetic field becomes disturbed on plasma streamlines which are connected to the quasi-parallel bow shock and foreshock, the magnetic field orientation on the inner magnetosheath may differ significantly from the undisturbed IMF. We present a model of dayside reconnection which may occur when the IMF northward and illustrate its effects on the erosion of the magnetopause.  相似文献   
216.
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) Mini-Module, a Space Shuttle middeck locker payload which supports a variety of aquatic inhabitants (fish, snails, plants and bacteria) in an enclosed 8.6 L chamber, was tested for its biological stability in microgravity. The aquatic plant, Ceratophyllum demersum L., was critical for the vitality and functioning of this artificial mini-ecosystem. Its photosynthetic pigment concentrations were of interest due to their light harvesting and protective functions. "Post-flight" chlorophyll and carotenoid concentrations within Ceratophyllum apical segments were directly related to the quantities of light received in the experiments, with microgravity exposure (STS-89) failing to account for any significant deviation from ground control studies.  相似文献   
217.
We examined whether microgravity influences the induced-mutation frequencies through in vivo experiments during space flight aboard the space shuttle Discovery (STS-91). We prepared dried samples of repair-deficient strains and parental strains of Escherichia (E.) coli and Saccharomyces (S.) cerevisiae given DNA damage treatment. After culture in space, we measured the induced-mutation frequencies and SOS-responses under microgravity. The experimental findings indicate that almost the same induced-mutation frequencies and SOS-responses of space samples were observed in both strains compared with the ground control samples. It is suggested that microgravity might not influence induced-mutation frequencies and SOS-responses at the stages of DNA replication and/or DNA repair. In addition, we developed a new experimental apparatus for space experiments to culture and freeze stocks of E. coli and S. cerevisiae cells.  相似文献   
218.
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air.  相似文献   
219.
The results of experiments aboard spacecraft demonstrated the dependence of the pattern of biological processes on microgravity and on the ability of biological objects to adapt themselves to new environmental conditions. This is of fundamental importance for solving theoretical and practical problems of space biology, or elaborating the theory of organism's behavior in weightlessness, and for elucidating the global mechanisms of the action of microgravity on living systems.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号