首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2482篇
  免费   7篇
  国内免费   6篇
航空   1220篇
航天技术   997篇
综合类   5篇
航天   273篇
  2021年   13篇
  2019年   14篇
  2018年   41篇
  2017年   34篇
  2016年   25篇
  2015年   11篇
  2014年   50篇
  2013年   62篇
  2012年   50篇
  2011年   87篇
  2010年   62篇
  2009年   105篇
  2008年   149篇
  2007年   62篇
  2006年   46篇
  2005年   62篇
  2004年   71篇
  2003年   91篇
  2002年   46篇
  2001年   101篇
  2000年   45篇
  1999年   86篇
  1998年   85篇
  1997年   62篇
  1996年   63篇
  1995年   88篇
  1994年   97篇
  1993年   37篇
  1992年   59篇
  1991年   22篇
  1990年   28篇
  1989年   56篇
  1988年   20篇
  1987年   35篇
  1986年   21篇
  1985年   74篇
  1984年   42篇
  1983年   47篇
  1982年   55篇
  1981年   77篇
  1980年   26篇
  1979年   24篇
  1978年   22篇
  1977年   18篇
  1976年   15篇
  1975年   18篇
  1974年   12篇
  1972年   17篇
  1969年   13篇
  1966年   8篇
排序方式: 共有2495条查询结果,搜索用时 15 毫秒
91.
We present a compact atomic frequency standard based on the interrogation of magnetically trapped 87Rb atoms. Two photons, in the microwave and radiofrequency domain excite the atomic transition. At a magnetic field of 3.23 G this transition from ∣F = 1, mF = −1〉 to ∣F = 2, mF = 1〉 is 1st order insensitive to magnetic field variations. Long Ramsey interrogation times can thus be achieved, leading to a projected stability in the low 10−13 at 1 s. This makes this device a viable alternative to LITE and HORACE as a good candidate for replacing or complementing the rubidium frequency standards and passive hydrogen masers already on board of the GPS, GLONASS, and GALILEO satellites. Here we present preliminary results. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package potentially as small as (5 cm)3. We describe the experimental apparatus and show preliminary Ramsey fringes of 1.25 Hz linewidth. We also show a preliminary frequency stability σy = 1.5 × 10−12τ−1/2 for 10 < τ < 103 s. This represents one order of magnitude improvement with respect to previous experiments.  相似文献   
92.
Under ESA contract an industrial consortium including Aboa Space Research Oy (ASRO), the Astronomical Institute of the University of Bern (AIUB), and the Dutch National Aerospace Laboratory (NLR), proposed the observation concept, developed a suitable sensor architecture, and assessed the performance of a space-based optical (SBO) telescope in 2005. The goal of the SBO study was to analyse how the existing knowledge gap in the space debris population in the millimetre and centimetre regime may be closed by means of a passive optical instrument. The SBO instrument was requested to provide statistical information on the space debris population in terms of number of objects and size distribution. The SBO instrument was considered to be a cost-efficient with 20 cm aperture and 6° field-of-view and having flexible integration requirements. It should be possible to integrate the SBO instrument easily as a secondary payload on satellites launched into low-Earth orbits (LEO), or into geostationary orbit (GEO). Thus the selected mission concept only allowed for fix-mounted telescopes, and the pointing direction could be requested freely. Since 2007 ESA focuses space surveillance and tracking activities in the Space Situational Awareness (SSA) preparatory program. Ground-based radars and optical telescopes are studied for the build-up and maintenance of a catalogue of objects. In this paper we analyse how the proposed SBO architecture could contribute to the space surveillance tasks survey and tracking. We assume that the SBO instrumentation is placed into a circular sun-synchronous orbit at 800 km altitude. We discuss the observation conditions of objects at higher altitude, and select an orbit close to the terminator plane. A pointing of the sensor orthogonal to the orbital plane with optimal elevation slightly in positive direction (0° and +5°) is found optimal for accessing the entire GEO regime within one day, implying a very good coverage of controlled objects in GEO, too. Simulations using ESA’s Program for Radar and Optical Observation Forecasting (PROOF) in the version 2005 and a GEO reference population extracted from DISCOS revealed that the proposed pointing scenario provides low phase angles together with low angular velocities of the objects crossing the field-of-view. Radiometric simulations show that the optimal exposure time is 1–2 s, and that spherical objects in GEO with a diameter of below 1 m can be detected. The GEO population can be covered under proper illumination nearly completely, but seasonal drops of the coverage are possible. Subsequent observations of objects are on average at least every 1.5 days, not exceeding 3 days at maximum. A single observation arc spans 3° to 5° on average. Using a simulation environment that connects PROOF to AIUB’s program system CelMech we verify the consistency of the initial orbit determination for five selected test objects on subsequent days as a function of realistic astrometric noise levels. The initial orbit determination is possible. We define requirements for a correlator process essential for catalogue build-up and maintenance. Each single observation should provide an astrometric accuracy of at least 1”–1.5” so that the initially determined orbits are consistent within a few hundred kilometres for the semi-major axis, 0.01 for the eccentricity, and 0.1° for the inclination.  相似文献   
93.
The Clouds and Earth Radiant Energy System (CERES) project’s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers.  相似文献   
94.
A regional tropospheric model can be constructed using surveys from GPS ground networks. Using this model the tropospheric delays of a kinematic station within the region can be interpolated. However, such a model is generally not suitable for an airborne platform high above the ground networks. In this paper, a method of constructing a regional tropospheric model for airborne GPS applications is described. First, the kinematic station in the air is projected onto the ground. Then the tropospheric delays at projected point are interpolated from those of the ground networks. Finally, the tropospheric delays at projected point are extended upward to the airborne platform using pressure and temperature gradients and humidity exponential function. For validation of this method, the data of airborne campaign carried out by BKG in cooperation with GFZ and BGR 2008 in the northern Alps are used. The results show that GPS kinematic positioning precision in height component can be improved using this method.  相似文献   
95.
In this paper, Science Operations Planning Expertise (SOPE) is defined as the expertise that is held by people who have the two following qualities. First they have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Second, they can be used, on request and at least, to provide with advice the teams that design and implement science operations systems in order to optimise the performance and productivity of the mission. However, the relevance and use of such SOPE early on during the Mission Design Phase (MDP) is not sufficiently recognised. As a result, science operations planning is often neglected or poorly assessed during the mission definition phases. This can result in mission architectures that are not optimum in terms of cost and scientific returns, particularly for missions that require a significant amount of science operations planning. Consequently, science operations planning difficulties and cost underestimations are often realised only when it is too late to design and implement the most appropriate solutions. In addition, higher costs can potentially reduce both the number of new missions and the chances of existing ones to be extended. Moreover, the quality, and subsequently efficiency, of SOPE can vary greatly. This is why we also believe that the best possible type of SOPE requires a structure similar to the ones of existing bodies of expertise dedicated to the data processing such as the International Planetary Data Alliance (IPDA), the Space Physics Archive Search and Extract (SPASE) or the Planetary Data System (PDS). Indeed, this is the only way of efficiently identifying science operations planning issues and their solutions as well as of keeping track of them in order to apply them to new missions. Therefore, this paper advocates for the need to allocate resources in order to both optimise the use of SOPE early on during the MDP and to perform, at least, a feasibility study of such a more structured SOPE.  相似文献   
96.
The γ-ray emission of blazar jets shows a pronounced variability and this feature provides limits to the size and to the speed of the emitting region. We study the γ-ray variability of bright blazars using data from the first 18 months of activity of the Large Area Telescope on the Fermi Gamma-Ray Space Telescope. From the daily light-curves of the blazars characterized by a remarkable activity, we firstly determine the minimum variability time-scale, giving an upper limit for the size of the emitting region of the sources, assumed to be spheroidal blobs in relativistic motion. These regions must be smaller than ∼10−3 parsec. Another interesting time-scale is the duration of the outbursts. We conclude that they cannot correspond to radiation produced by a single blob moving relativistically along the jet, but they are either the signature of emission from a standing shock extracting energy from a modulated jet, or the superposition of a number of flares occurring on a shorter time-scale. We also derive lower limits on the bulk Lorentz factor needed to make the emitting region transparent for gamma-rays interacting through photon–photon collisions.  相似文献   
97.
98.
The geostationary tether satellite system expands the geostationary orbit resource from a one-dimensional arc into a two-dimensional disk. The tethered satellites, each several thousand kilometers apart and aligned along the local vertical, are stabilized at the altitude of the geosynchronous orbital speed. When this system is applied to communications systems, it is estimated that the number of satellites can be increased as much as thirteenfold and the communication capacity can be increased more than seventeenfold, compared with a conventional geostationary satellite orbit system  相似文献   
99.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
100.
Exact multisensor dynamic bias estimation with local tracks   总被引:2,自引:0,他引:2  
An exact solution is provided for the multiple sensor bias estimation problem based on local tracks. It is shown that the sensor bias estimates can be obtained dynamically using the outputs of the local (biased) state estimators. This is accomplished by manipulating the local state estimates such that they yield pseudomeasurements of the sensor biases with additive noises that are zero-mean, white, and with easily calculated covariances. These results allow evaluation of the Cramer-Rao lower bound (CRLB) on the covariance of the sensor bias estimates, i.e., a quantification of the available information about the sensor biases in any scenario. Monte Carlo simulations show that this method has significant improvement in performance with reduced rms errors of 70% compared with commonly used decoupled Kalman filter. Furthermore, the new method is shown to be statistically efficient, i.e., it meets the CRLB. The extension of the new technique for dynamically varying sensor biases is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号