首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
航天技术   9篇
航天   3篇
  2013年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2002年   4篇
  1999年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
The effects of small vibrations on Marangoni convection were investigated experimentally using a liquid bridge of 5 cSt silicone oil with a disk diameter of 7.0 mm, and an aspect ratio close to 0.5. Experiments were performed to determine the critical temperature difference data for no vibration case and with small vibrations applied. The experimental results have shown that the effect of small vibrations on the onset of oscillatory flow is small since the critical temperature difference data for different aspect ratios were not affected by the vibrations. To clarify the surface oscillation phenomena induced by external vibrations, a 3-D numerical simulation model was also developed using a level set algorithm to predict the surface oscillations of isothermal silicone oil bridges. By subjecting the liquid bridge to small vibrations, the surface oscillation characteristics were predicted numerically, and the numerical results compared well with the predictions of an analytical model proposed previously. Furthermore, the effect of small vibrations on the surface vibration amplitude of the liquid bridge is also discussed.  相似文献   
2.
The paper summarizes the data on proliferation and gravity-related gene expression of osteoblasts that were obtained from an experiment conducted under simulated and real microgravity conditions. Simulated microgravity conditions obtained in a clinostat depress proliferation of both osteoblast-like MC3T3-E1 and HeLa carcinoma cells. This depression of proliferation occurs in a collagen gel culture in which the flow of culture medium by rotation may be reduced. Interestingly, MC3T3-E1 cells which are probably one of target cells to microgravity are more sensitive than the HeLa cells. Simulated microgravity inhibited the epidermal growth factor (EGF)-induced c-fos gene expression in the MC3T3-El cells. To examine in detail the effect of real microgravity on the EGF signal transduction cascade in osteoblasts, MC3T3-E1 cells were cultured in the Cell Culture Experiment Module of the sounding rocket TR-1A6. The EGF-induced c-fos expression in cells was depressed under short-term microgravity conditions in the sounding rocket, while the phosphorylation of mitogen-activated protein kinase (MAPK) was not affected compared with the controls grown on the ground. These results suggest that an action site of microgravity in the signal transduction pathway may be downstream of MAPK.  相似文献   
3.
Skeletal form of KNbO3 crystals growing in Li2B4O7 solvent was in-situ observed at 900°C and it was found that shallow depression started to develop on the surface of KNbO3 crystals when the crystal size exceeded several micron, typically 7 micron.Based on the quantitative criterion derived by Chernov, the estimated critical size of KNbO3 crystals was 1 micron, which was consistent with the experimental measure ment. The kinetic coefficients, kcorner and kcr, in the criterion were experimentally obtained in the diffusive-convective and diffusive-advective flow states respectively.  相似文献   
4.
Experimentally, it was observed that there were various morphologies of KNbO3 crystals in different regions of the melt of Li2B4O7 and KNbO3 mixture in Pt loop heater. Dendrites grew in the central area of the melt, the diffusive-advective region,in which the temperature gradient is negligible; whereas crystals with smooth sur face were observed in the marginal area, the diffusive-convective region, with large temperature gradient. Based on the solute concentration over the KNbO3 crystal surface examined by electronic probe analysis, it was proved that the combinative effect of buoyancy and surface tension convection induced by temperature gradient enhanced the homogeneity of the solute concentration around KNbO3 crystals and thus their morphological stability.  相似文献   
5.
Structure and thermal control of panel extension satellite (PETSAT)   总被引:1,自引:0,他引:1  
Panel ExTension SATellite (PETSAT) [S. Nakasuka, Y. Nakamura, Panel extension satellite (PETSAT)—a novel satellite concept consisting of modular, functional and plug-in panels, in: 24th International Symposium on Space Technology and Science, invited talk, 2004-o-2, 2004 [1]] is a satellite which is made of several “functional panels”. Each panel has a special dedicated function and various combinations of different kinds of functional panels enable PETSAT to deal with various mission requirement. Development of PETSAT requires four interface requirements. These are mechanical interface, thermal interface, electrical interface and information interface. In this paper, mechanical interface and thermal interface of PETSAT are especially focused on and introduced. In the development of PETSAT issues about mechanical interface corresponds to panel structure and deployment mechanism. The structure of PETSAT is designed so as to have light weigh, enough space for devices and high stiffness. And deployment system has simple mechanism to avoid vacuum metalizing and improve reliability. On the other hand, approaches for thermal interface [K. Higashi, S. Nakasuka, Y. Sugawara, H. Sahara, K. Koyama, C. Kobayashi, T. Okada, Thermal control of panel extension satellite (PETSAT), in: 25th International Symposium on Space Technology and Science, 2006-j-02, 2006 [2]] are homogenization of temperature within panel and between panels. Homogenization of temperature within panels can be realized by heat lane plate, and that between panels is realized by magnetic fluid loop with magnetic heat pump. These approaches for mechanical and thermal interface are demonstrated in SOHLA-2 [Y. Sugawara, S. Nakasuka, T. Eishima, H. Sahara, Y. Nakamura, K. Koyama, C. Kobayashi, T. Okada, Elemental technologies for realization of panel extension satellite (PETSAT), in: 25th International Symposium on Space Technology and Science, 2006-J-01, 2006 [3]] that is satellite of technology demonstration for PETSAT.  相似文献   
6.
Theses days, many nano- and micro-satellites are applied to several astronomy and remote sensing missions. In order to achieve mission requirements, these satellites must control the attitude precisely. A magnetic disturbance is one of the dominant sources of attitude disturbances. Therefore, this disturbance should be canceled in-orbit or on the ground to achieve the attitude strict requirements. This paper presents the effect of the magnetic disturbance to the attitude in nano- and micro-satellite missions and the sources of the residual magnetic moment of the satellites, which causes the magnetic disturbance. Then, the paper proposes a method to compensate the residual magnetic moment both in-orbit and in the design phase of the satellites. The research also focused on a time-varying residual magnetic moment. Finally, the method is applied to a micro-astrometry satellite as an example.  相似文献   
7.
We have investigated experimentally and theoretically the thermocapillary convec tive flow phenomena in a loop-shaped Pt wire heater of KNbO3 (20wt.%) and Li2B4O7 solutions. Optical evaluations in connection with thermocouple measure ments made it possible to get a new type of thermocapillary convective flow in the considered system. To study the kinematical behaviour of thermocapillary convec tion, we have measured the stream flow velocities. In a theoretical analysis, the flow velocity due to the thermocapillary effect alone was estimated by balancing the sur face tension forces by viscous forces. The velocity distribution in the solution near the margin of the heater was obtained, which is in agreement with the experimental result.  相似文献   
8.
To counter residual accelerations, dedicated levitators or positioners are necessary to support a host of materials science experiments on the ground and in microgravity. All levitators (e.g., aerodynamic, acoustic, electromagnetic, electrostatic, optical) have their own merits and limitations but the electrostatic scheme offers the combined advantages of processing millimeter-size objects, independent heating, quasi-spherical shape of molten materials, handling of materials under extreme temperatures for hours, virtually convection-free samples, and wide view around the samples for diagnostic. These attributes provide unique research opportunities in materials science on the ground as well as under reduced gravity. In particular, electrostatic levitators are very attractive to measure the physical and structural properties of equilibrium and non-equilibrium liquids, to synthesize multi-function materials, and to understand metastable phase formation, vitrification, and diffusion. In this paper, research and development carried out by the Japan Aerospace Exploration Agency over the years in the field of electrostatic levitation are summarized and the main results obtained in materials science are presented.  相似文献   
9.
Nano-satellites provide space access to broader range of satellite developers and attract interests as an application of the space developments. These days several new nano-satellite missions are proposed with sophisticated objectives such as remote-sensing and observation of astronomical objects. In these advanced missions, some nano-satellites must meet strict attitude requirements for obtaining scientific data or images. For LEO nano-satellite, a magnetic attitude disturbance dominates over other environmental disturbances as a result of small moment of inertia, and this effect should be cancelled for a precise attitude control. This research focuses on how to cancel the magnetic disturbance in orbit. This paper presents a unique method to estimate and compensate the residual magnetic moment, which interacts with the geomagnetic field and causes the magnetic disturbance. An extended Kalman filter is used to estimate the magnetic disturbance. For more practical considerations of the magnetic disturbance compensation, this method has been examined in the PRISM (Pico-satellite for Remote-sensing and Innovative Space Missions). This method will be also used for a nano-astrometry satellite mission. This paper concludes that use of the magnetic disturbance estimation and compensation are useful for nano-satellites missions which require a high accurate attitude control.  相似文献   
10.
By applying the cross-phase method and the amplitude-ratio method to magnetic field data obtained from two ground stations located close to each other, we can determine the frequency of the field line resonance (FLR), or the field line eigenfrequency, for the field line running through the midpoint of the two stations. From thus identified FLR frequency we can estimate the equatorial plasma mass density (ρ)(ρ) by using the T05s magnetospheric field model [Tsyganenko, N.A., Sitnov, M.I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res. 110, A03208, 2005] and the equation of Singer et al. [Singer, H.J., Southwood, D.J., Walker, R.J., Kivelson, M.G. Alfven wave resonances in a realistic magnetospheric magnetic field geometry, J. Geophys. Res. 86 (A6) 4589–4596, 1981].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号