首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
航空   36篇
航天技术   14篇
航天   29篇
  2018年   3篇
  2017年   6篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   2篇
  2005年   6篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有79条查询结果,搜索用时 125 毫秒
71.
The NOAA satellite system comprises the polar-orbiting satellites which provide image data twice a day, and the geostationary satellites, which provide image data every 30 minutes. Data is provided in the visible, near infrared, and middle and far thermal infrared at 1 km resolution from the polar-orbiting satellites and in the visible at 1-km resolution and in the far thermal infrared at 8 km resolution from the geostationary satellites. Applications described include monitoring tectonic lineaments in Alaska, monitoring the Greenland Ice Sheet, mapping geomorphology in the Dakotas and monitoring volcano eruptions. Applications of the Heat Capacity Mapping Mission described include discriminating rock types and indications of mineral deposits. Current research into Land Sciences Applications are discussed and recommendations made for further areas of research.  相似文献   
72.
International space launch notification and data exchange   总被引:1,自引:1,他引:0  
Scott C. Larrimore   《Space Policy》2007,23(3):172-179
As missile and space launch technology continue to proliferate around the world, nations will benefit from increased transparency to mitigate the potentially strategic consequences of early warning false alarms or misinterpretations. Previous false alarms and risk mitigation steps taken by the United States and the former Soviet Union and Russia are examined. Two pre-launch notification initiatives, the bilateral US/Russia Joint Data Exchange Center and the multilateral Hague Code of Conduct, offer means to further build confidence among spacefaring nations and enhance strategic stability. Pragmatic recommendations are offered to strengthen the emerging pre-launch notification regime.  相似文献   
73.
The NASA Ionospheric Connection Explorer Far-Ultraviolet spectrometer, ICON FUV, will measure altitude profiles of the daytime far-ultraviolet (FUV) OI 135.6 nm and N2 Lyman-Birge-Hopfield (LBH) band emissions that are used to determine thermospheric density profiles and state parameters related to thermospheric composition; specifically the thermospheric column O/N2 ratio (symbolized as \(\Sigma\)O/N2). This paper describes the algorithm concept that has been adapted and updated from one previously applied with success to limb data from the Global Ultraviolet Imager (GUVI) on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. We also describe the requirements that are imposed on the ICON FUV to measure \(\Sigma\)O/N2 over any 500-km sample in daytime with a precision of better than 8.7%. We present results from orbit-simulation testing that demonstrates that the ICON FUV and our thermospheric composition retrieval algorithm can meet these requirements and provide the measurements necessary to address ICON science objectives.  相似文献   
74.
75.
76.
Scott Pace 《Space Policy》1988,4(4):307-318
The new US administration faces complex questions on the future role of the USA in space, and tough decisions on how to pay for it. Decisions made now on space transportation will have a strong impact on US space leadership for the next decade. The author discusses the history and current state of space transportation planning, and considers the key issues which will confront the new administration.  相似文献   
77.
The NASA Juno mission includes a six-channel microwave radiometer system (MWR) operating in the 1.3–50 cm wavelength range in order to retrieve abundances of ammonia and water vapor from the microwave signature of Jupiter (see Janssen et al. 2016). In order to plan observations and accurately interpret data from such observations, over 6000 laboratory measurements of the microwave absorption properties of gaseous ammonia, water vapor, and aqueous ammonia solution have been conducted under simulated Jovian conditions using new laboratory systems capable of high-precision measurement under the extreme conditions of the deep atmosphere of Jupiter (up to 100 bars pressure and 505 K temperature). This is one of the most extensive laboratory measurement campaigns ever conducted in support of a microwave remote sensing instrument. New, more precise models for the microwave absorption from these constituents have and are being developed from these measurements. Application of these absorption properties to radiative transfer models for the six wavelengths involved will provide a valuable planning tool for observations, and will also make possible accurate retrievals of the abundance of these constituents during and after observations are conducted.  相似文献   
78.
The Juno Gravity Science Instrument   总被引:1,自引:0,他引:1  
The Juno mission’s primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter’s gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA’s Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (\(\sim 8\) GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (\(\sim 32\) GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.  相似文献   
79.
The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号