首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
航空   7篇
航天技术   13篇
航天   1篇
  2022年   1篇
  2021年   2篇
  2018年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2006年   1篇
  1999年   1篇
  1984年   1篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
Space Science Reviews - We review novel data analysis techniques developed or adapted for the field of coronal seismology. We focus on methods from the last ten years that were developed for...  相似文献   
12.
A method based upon the quasi-linearization technique of evaluating the pull-in characteristics of a phase locked loop for an angle modulated signal corrupted with Gaussian noise is presented. Experimental results along with formulas for calculating the locking range and locking time are also presented and they are in good agreement with the theoretical results. Some new findings regarding the dependence of the locking range and locking time on the modulating frequency are also incorporated.  相似文献   
13.
Hyperspectral resolution image products of a synthetic sensor featuring the high spatial resolution of the space-borne sensor can offer cost-effective means for enhancing our current capabilities in terms of providing an array of images in lieu of designing an expensive system for image acquisition, which can serve the expanding needs of the scientific and user communities for various critical water color applications. Despite several studies on enhancing the capability of land remote sensing sensors, full spectrum reconstruction of water color images with varying spectral bands is hampered by the lack of methods and accurate atmospheric correction procedures. In the present work, a novel method is developed for reconstruction of hyperspectral resolution images from high spatial-resolution Sentinel 2 Multispectral Instrument (MSI) data representative of many complex waters in coastal and inland zones. This method uses a deep neural network (DNN) with multiple blocks of deconvolution and dense layers. The spectral reconstruction of hyperspectral resolution images from multispectral data was based on rigorous training data from the atmospherically-corrected and validated HICO normalized water-leaving radiance products (with spectral resolution 438-868 nm sampled at 5.7 nm) of diverse water types. The generalizability and versatility of the DNN method was tested and evaluated systematically by means of various qualitative and quantitative analyses using concurrent space-borne (MSI and HICO) and in-situ measurements from different regional waters. Reconstructed hyperspectral resolution radiances obtained from the MSI images closely matched with independent HICO and MSI measurements within the desired accuracy. Successful reconstruction and validation of the hyperspectral radiances indicate that the proposed state-of-the-art method provides possible future directions for enhancing our current capabilities of space-borne sensors for various research purposes and societal applications at local, regional and global scales.  相似文献   
14.
The Galactic microquasar GRS 1915 + 105 exhibits at least seventeen types of variability classes. Intra and inter class transitions are reported to be observed within seconds to hours. Since the observation was not continuous, these classes appeared to be exhibited in a random order. Our goal is to predict a sequence of these classes. In this paper, we compute the ratio of the photon counts obtained from the power-law component and the blackbody component of each class and call this ratio as the ‘Comptonizing efficiency’ (CE) of that class. We sequence the classes in the ascending order of CE and find that this sequence matches with a few class transitions observed by RXTE satellite and IXAE instruments on board IRS-P3. A change in CE corresponds to a change in the optical depth of the Compton cloud. Our result implies that the optical depth of the Compton cloud gradually rises as the variability class becomes harder.  相似文献   
15.
The High Energy X-ray spectrometer (HEX) on Chandrayaan-1 was designed to study the photon emission in the range of 30–270 keV from naturally occurring radioactive decay of 238U and 232Th series nuclides from the lunar surface. The primary objective of HEX was to study the transport of volatiles on the lunar surface using radon as a tracer and mapping the 46.5 keV line from 210Pb, a decay product of 222Rn. HEX was tested for two days during the commissioning phase of Chandrayaan-1 and performance of all sub systems was found to be as expected. HEX started collecting science data during the first non-prime imaging season (February–April, 2009) of Chandrayaan-1. Certain anomalies persisted in this data set and the early curtailment of Chandrayaan-1 mission in August, 2009, did not allow any further operation of HEX. Despite these issues, HEX provided the first data set for 30–270 keV continuum emission, averaged over a significant portion of the lunar surface, including the polar region.  相似文献   
16.
A new method is developed for determining the threshold carrier-to-noise ratio of a phase locked demodulator based on the notion of the quasi-linearization technique. Simple relations showing the dependence of the threshold carrier-to-noise ratio on the modulation index of the frequency modulated wave are given.  相似文献   
17.
In this paper the dependence of the threshold CNR of a simple phaselocked demodulator on the frequency deviation of an FM signal has been evaluated by the concept of quasi-stationary approximation. Experimental findings have been presented in support of the theoretical conclusion.  相似文献   
18.
Remotely sensed high spatial resolution thermal images are required for various applications in natural resource management. At present, availability of high spatial resolution (<200 m) thermal images are limited. The temporal resolution of such images is also low. Whereas, coarser spatial resolution (∼1000 m) thermal images with high revisiting capability (∼1 day) are freely available. To bridge this gap, present study attempts to downscale coarser spatial resolution thermal image to finer spatial resolution using relationships between land surface temperature (LST) and vegetation indices over a heterogeneous landscape of India. Five regression based models namely (i) Disaggregation of Radiometric Temperature (DisTrad), (ii) Temperature Sharpening (TsHARP), (iii) TsHARP with local variant, (iv) Least median square regression downscaling (LMSDS) and (v) Pace regression downscaling (PRDS) are applied to downscale LST of Landsat Thematic Mapper (TM) and Terra MODIS (Moderate Resolution Imaging Spectroradiometer) images. All the five models are first evaluated on Landsat image aggregated to 960 m resolution and downscaled to 480 m and 240 m resolution. The downscale accuracy is achieved using LMSDS and PRDS models at 240 m resolution at 0.61 °C and 0.75 °C respectively. MODIS data downscaled from 1000 m to 250 m spatial resolution results root mean square error (RMSE) of 1.43 °C and 1.62 °C for LMSDS and PRDS models, respectively. The LMSDS model is less sensitive to outliers in heterogeneous landscape and provides higher accuracy when compared to other models. Downscaling model is found to be suitable for agricultural and vegetated landscapes up to a spatial resolution of 250 m but not applicable to water bodies, dry river bed sand sandy open areas.  相似文献   
19.
During the total solar eclipse of 2009, a week-long campaign was conducted in the Indian sub-continent to study the low-latitude D-region ionosphere using the very low frequency (VLF) signal from the Indian Navy transmitter (call sign: VTX3) operating at 18.2 kHz. It was observed that in several places, the signal amplitude is enhanced while in other places the amplitude is reduced. We simulated the observational results using the well known Long Wavelength Propagation Capability (LWPC) code. As a first order approximation, the ionospheric parameters were assumed to vary according to the degree of solar obscuration on the way to the receivers. This automatically brought in non-uniformity of the ionospheric parameters along the propagation paths. We find that an assumption of 4 km increase of lower ionospheric height for places going through totality in the propagation path simulate the observations very well at Kathmandu and Raiganj. We find an increase of the height parameter by h=+3.0h=+3.0 km for the VTX-Malda path and h=+1.8h=+1.8 km for the VTX-Kolkata path. We also present, as an example, the altitude variation of electron number density throughout the eclipse time at Raiganj.  相似文献   
20.
We present a forward modelling technique for calculating the surface X-ray spectra for a variety of lunar terrains. Our calculations considered variations in solar fluxes from solar quiescent condition to large flare activity (M1 flare), and expected elemental concentrations in the target, as well as yield, instrumental, and viewing geometry parameters for X-ray induced fluorescence from the lunar surface. Additionally, we present estimates of anticipated XRF signals from prominent Kα lines observable by a collimated 14 cm2 X-ray detector from a 100 km lunar orbit with ∼20 km spatial resolution. Our results show that Mg, Al and Si characteristic Kα lines can be observed for all solar conditions. The Ca Kα lines line can be differentiated from a fixed background during more energetic solar conditions such as C1 and M1 flares, whereas Ti and Fe lines are identifiable only during C1 and M1 solar flare conditions for Apollo 12 site composition. Both the Kα X-ray intensity ratios of Mg/Si and Al/Si correlate well with concentration ratios of Mg/Si and Al/Si, respectively, for B1 and M1 solar conditions. The Kα X-ray intensity ratios of Fe/Si and Ca/Si correlates with concentration ratios of Fe/Si and Ca/Si, respectively, for M1 solar condition. In principle, the modelling technique outlined here can be used to determine absolute elemental abundances (Mg, Al, Si, Ca, Ti and Fe) from X-ray spectra measured during recent and future lunar missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号