全文获取类型
收费全文 | 4466篇 |
免费 | 13篇 |
国内免费 | 7篇 |
专业分类
航空 | 2086篇 |
航天技术 | 1604篇 |
综合类 | 16篇 |
航天 | 780篇 |
出版年
2021年 | 44篇 |
2019年 | 25篇 |
2018年 | 104篇 |
2017年 | 73篇 |
2016年 | 76篇 |
2015年 | 39篇 |
2014年 | 130篇 |
2013年 | 138篇 |
2012年 | 143篇 |
2011年 | 193篇 |
2010年 | 127篇 |
2009年 | 216篇 |
2008年 | 293篇 |
2007年 | 128篇 |
2006年 | 107篇 |
2005年 | 138篇 |
2004年 | 117篇 |
2003年 | 153篇 |
2002年 | 89篇 |
2001年 | 153篇 |
2000年 | 74篇 |
1999年 | 99篇 |
1998年 | 120篇 |
1997年 | 87篇 |
1996年 | 90篇 |
1995年 | 124篇 |
1994年 | 121篇 |
1993年 | 64篇 |
1992年 | 95篇 |
1991年 | 53篇 |
1990年 | 36篇 |
1989年 | 88篇 |
1988年 | 40篇 |
1987年 | 42篇 |
1986年 | 36篇 |
1985年 | 96篇 |
1984年 | 86篇 |
1983年 | 75篇 |
1982年 | 86篇 |
1981年 | 118篇 |
1980年 | 41篇 |
1979年 | 36篇 |
1978年 | 32篇 |
1977年 | 25篇 |
1976年 | 28篇 |
1975年 | 22篇 |
1974年 | 22篇 |
1973年 | 23篇 |
1972年 | 23篇 |
1971年 | 21篇 |
排序方式: 共有4486条查询结果,搜索用时 15 毫秒
881.
V.?A.?Afanas’ev G.?L.?Degtyarev A.?S.?MeshchanovEmail author 《Russian Aeronautics (Iz VUZ)》2018,61(1):23-31
Real values of parameters for a space vehicle and its steering devices are specified by using the motion parameters measured in flight based on solving the differential equations of motion. 相似文献
882.
N.C Bissinger N.A Blagoveshchensky A.A Gubanov V.N Gusev V.P Starukhin N.V Voevodenko S.M Zadonsky 《Aerospace Science and Technology》1998,2(8):505-514
Results of a numerical (CFD) study of the influence of the forebody shape on local flow parameters at a bottom-mounted inlet entrance are presented. The free-stream Mach number is assumed to be 3.5–7.0. Some recommendations on forebody shape optimization are provided. Main characteristics of the air inlet are evaluated. 相似文献
883.
W.D. Apel J.C. Arteaga-Velázquez K. Bekk M. Bertaina J. Blümer H. Bozdog I.M. Brancus E. Cantoni A. Chiavassa F. Cossavella K. Daumiller V. de Souza F. Di Pierro P. Doll R. Engel J. Engler M. Finger B. Fuchs D. Fuhrmann H.J. Gils R. Glasstetter C. Grupen A. Haungs D. Heck J.R. Hörandel D. Huber T. Huege K.-H. Kampert D. Kang H.O. Klages K. Link P. Łuczak M. Ludwig H.J. Mathes H.J. Mayer M. Melissas J. Milke B. Mitrica C. Morello J. Oehlschläger S. Ostapchenko N. Palmieri M. Petcu T. Pierog H. Rebel M. Roth H. Schieler S. Schoo F.G. Schröder O. Sima 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
884.
Security applications of computer vision 总被引:1,自引:0,他引:1
In an age which bears witness to a proliferation of Closed Circuit Television (CCTV) cameras for security and surveillance monitoring, the use of image processing and computer vision techniques which were provided as top end bespoke solutions can now be realised using desktop PC processing. Commercial Video Motion Detection (VMD) and Intelligent Scene Monitoring (ISM) systems are becoming increasingly sophisticated, aided, in no small way, by a technology transfer from previously exclusively military research sectors. Image processing is traditionally concerned with pre-processing operations such as Fourier filtering, edge detection and morphological operations. Computer vision extends the image processing paradigm to include understanding of scene content, tracking and object classification. Examples of computer vision applications include Automatic Number Plate Recognition (ANPR), people and vehicle tracking, crowd analysis and model based vision. Often image processing and computer vision techniques are developed with highly specific applications in mind and the goal of a more global understanding computer vision system remains, at least for now, outside the bounds of present technology. This paper will review some of the most recent developments in computer vision and image processing for challenging outdoor perimeter security applications. It also describes the efforts of development teams to integrate some of these advanced ideas into coherent prototype development systems 相似文献
885.
P Todd D M Klaus L S Stodieck J D Smith L A Staehelin M Kacena B Manfredi A Bukhari 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1263-1268
Our understanding of gravitational effects (inertial effects in the vicinity of 1 x g) on cells has matured to a stage at which it is possible to define, on the basis of experimental evidence, extracellular effects on small cells and intracellular effects on eukaryotic gravisensing cells. Yet undetermined is the nature of response, if any, of those classes of cells that are not governed solely by extracellular physical events (as are prokaryotes) and are devoid of obvious mechanical devices for sensing inertial forces (such as those possessed by certain plant cells and sensory cells of animals). This "in-between" class of cells needs to be understood on the basis of the combination of intracellular and extracellular gravity-dependent processes that govern experimentally-measurable variables that are relevant to the cell's responses to modified inertial forces. The forces that certain cell types generate or respond to are therefore compared to those imposed by approximately 1 x g in the context of cytoskeletal action and symmetry-breaking pathways. 相似文献
886.
The results of studying the interaction of two types of the solar wind (magnetic clouds and solar wind of extremely low density) with the Earth's magnetosphere are discussed. This study is based of the INTERBALL space project measurements and on the other ground-based and space observations. For moderate variations of the solar wind and interplanetary magnetic field (IMF) parameters, the response of the magnetosphere is similar to its response to similar changes in the absence of magnetic clouds and depends on a previous history of IMF variations. Extremely large density variations on the interplanetary shocks, and on leading and trailing edges of the clouds result in a strong deformation of the magnetosphere, in large-scale motion of the geomagnetic tail, and in the development of magnetic substorms and storms. The important consequences of these processes are: (1) the observation of regions of the magnetosphere and its boundaries at great distances from the average location; (2) density and temperature variations in the outer regions of the magnetosphere; (3) multiple crossings of geomagnetic tail boundaries by a satellite; and (4) bursty fluxes of electrons and ions in the magnetotail, auroral region, and the polar cap. Several polar activations and substorms can develop during a single magnetic cloud arrival; a greater number of these events are accompanied, as a rule, by the development of a stronger magnetic storm. A gradual, but very strong, decrease of the solar wind density on May 10–12, 1999, did not cause noticeable change of geomagnetic indices, though it resulted in considerable expansion of the magnetosphere. 相似文献
887.
W. H. Matthaeus G. P. Zank R. J. Leamon C. W. Smith D. J. Mullan S. Oughton 《Space Science Reviews》1999,87(1-2):269-275
Mechanisms for the deposition of heat in the lower coronal plasma are discussed, emphasizing recent attempts to reconcile
the fluid and kinetic perspectives. Structures at the MHD scales are believed to act as reservoirs for fluctuation energy,
which in turn drive a nonlinear cascade process. Kinetic processes act at smaller spatial scales and more rapid time scales.
Cascade-driven processes are contrasted with direct cyclotron absorption, and this distinction is echoed in the contrast between
frequency and wavenumber spectra of the fluctuations. Observational constraints are also discussed, along with estimates of
the relative efficiency of cascade and cyclotron processes.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
888.
From magnetic fields and coronal heating observed in flares, active regions, quiet regions, and coronal holes, we propose
that exploding sheared core magnetic fields are the drivers of most of the dynamics and heating of the solar atmosphere, ranging
from the largest and most powerful coronal mass ejections and flares, to the vigorous microflaring and coronal heating in
active regions, to a multitude of fine-scale explosive events in the magnetic network, driving microflares, spicules, global
coronal heating, and, consequently, the solar wind.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
889.
J-P de Vera G Horneck P Rettberg S Ott 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(8):1236-1243
Complementary to the already well-studied microorganisms, lichens, symbiotic organisms of the mycobiont (fungi) and the photobiont (algae), were used as "model systems" in which to examine the ecological potential to resist to extreme environments of outer space. Ascospores (sexual propagules of the mycobiont) of the lichens Fulgensia bracteata, Xanthoria elegans and Xanthoria parietina were exposed to selected space-simulating conditions (up to 16 h of space vacuum at 10(-3) Pa and UV radiation at 160 nm < or = lambda < or = 400 nm), while embedded in the lichen fruiting bodies. After exposure, the ascospores were discharged and their viability was tested as germination capacity on different culture media including those containing Mars regolith simulant. It was found that (i) the germination rate on media containing Mars regolith simulant was as high as on other mineral-containing media, (ii) if enclosed in the ascocarps, the ascospores survived the vacuum exposure, the UV-irradiation as well as the combined treatment of vacuum and UV to a high degree. In general, 50 % or more viable spores were recovered, with ascospores of X. elegans showing the highest survival. It is suggested that ascospores inside the ascocarps are well protected by the anatomical structure, the gelatinous layer and the pigments (parietin and carotene) against the space parameters tested. 相似文献
890.
C. J. Hansen M. A. Caplinger A. Ingersoll M. A. Ravine E. Jensen S. Bolton G. Orton 《Space Science Reviews》2017,213(1-4):475-506
Junocam is a wide-angle camera designed to capture the unique polar perspective of Jupiter offered by Juno’s polar orbit. Junocam’s four-color images include the best spatial resolution ever acquired of Jupiter’s cloudtops. Junocam will look for convective clouds and lightning in thunderstorms and derive the heights of the clouds. Junocam will support Juno’s radiometer experiment by identifying any unusual atmospheric conditions such as hotspots. Junocam is on the spacecraft explicitly to reach out to the public and share the excitement of space exploration. The public is an essential part of our virtual team: amateur astronomers will supply ground-based images for use in planning, the public will weigh in on which images to acquire, and the amateur image processing community will help process the data. 相似文献