首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18037篇
  免费   37篇
  国内免费   124篇
航空   9942篇
航天技术   5259篇
综合类   241篇
航天   2756篇
  2021年   155篇
  2018年   219篇
  2016年   166篇
  2014年   433篇
  2013年   514篇
  2012年   425篇
  2011年   595篇
  2010年   422篇
  2009年   772篇
  2008年   813篇
  2007年   388篇
  2006年   424篇
  2005年   398篇
  2004年   431篇
  2003年   515篇
  2002年   467篇
  2001年   570篇
  2000年   351篇
  1999年   453篇
  1998年   420篇
  1997年   315篇
  1996年   364篇
  1995年   432篇
  1994年   406篇
  1993年   355篇
  1992年   306篇
  1991年   249篇
  1990年   234篇
  1989年   381篇
  1988年   202篇
  1987年   235篇
  1986年   224篇
  1985年   639篇
  1984年   514篇
  1983年   406篇
  1982年   486篇
  1981年   610篇
  1980年   244篇
  1979年   188篇
  1978年   189篇
  1977年   146篇
  1976年   156篇
  1975年   186篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
351.
The analysis of observations of very high frequency radio noise intensity at the middle latitude on a frequency f = 500 MHz from 14th till 26th of October, 2003 is presented. These data are compared with the solar radio bursts in the range of frequencies 1–14 MHz registered by RAD2 receiver of the WAVES device installed on board the WIND spacecraft.  相似文献   
352.
The propagation of Jovian electrons in interplanetary space was modelled by solving the relevant transport equation numerically through the use of stochastic differential equations. This approach allows us to calculate, for the first time, the propagation time of Jovian electrons from the Jovian magnetosphere to Earth. Using observed quiet-time increases of electron intensities at Earth, we also derive values for this quantity. Comparing the modelled and observed propagation times we can gauge the magnitude of the transport parameters sufficiently to place a limit on the 6 MeV Jovian electron flux reaching Earth. We also investigate how the modelled propagation time, and corresponding Jovian electron flux, varies with the well-known ∼13 month periodicity in the magnetic connectivity of Earth and Jupiter. The results show that the Jovian electron intensity varies by a factor of ∼10 during this cycle of magnetic connectivity.  相似文献   
353.
Variations of the ionospheric weather W-index for two midlatitude observatories, namely, Grahamstown and Hermanus, and their conjugate counterpart locations in Africa are studied for a period from October 2010 to December 2011. The observatories are located in the longitude sector, which has consistent magnetic equator and geographic equator so that geomagnetic latitudes of the line of force are very close to the corresponding geographic latitudes providing opportunity to ignore the impact of the difference of the gravitational field and the geomagnetic field at the conjugate points on the ionosphere structure and dynamics. The ionosondes of Grahamstown and Hermanus provide data of the critical frequency (foF2), and Global Ionospheric Maps (GIM) provide the total electron content (TECgps) along the magnetic field line up to the conjugate point in the opposite hemisphere. The global model of the ionosphere, International Reference Ionosphere, extended to the plasmasphere altitude of 20,200 km (IRI-Plas) is used to deliver the F2 layer peak parameters from TECgps at the magnetic conjugate area. The evidence is obtained that the electron gas heated by day and cooled by night at the summer hemisphere as compared with the opposite features in the conjugate winter hemisphere testifies on a reversal of plasma fluxes along the magnetic field line by the solar terminator. The ionospheric weather W-index is derived from NmF2 (related with foF2) and TECgps data. It is found that symmetry of W-index behavior in the magnetic conjugate hemispheres is dominant for the equinoxes when plasma movement along the magnetic line of force is imposed on symmetrical background electron density and electron content. Asymmetry of the ionospheric storm effects is observed for solstices when the plasma diffuse down more slowly into the colder winter hemisphere than into the warmer summer hemisphere inducing either plasma increase (positive phase) or decrease (negative phase of W-index) in the ionospheric and plasmaspheric plasma density.  相似文献   
354.
The equatorial ionosphere has been known to become highly disturbed and thus rendering space-based navigation unreliable during space weather events, such as geomagnetic storms. Modern navigation systems, such as the Global Positioning System (GPS) use radio-wave signals that reflect from or propagate through the ionosphere as a means of determining range or distance. Such systems are vulnerable to effects caused by geomagnetic storms, and their performance can be severely degraded. This paper analyses total electron content (TEC) and the corresponding GPS scintillations using two GPS SCINDA receivers located at Makerere University, Uganda (Lat: 0.3o N; Lon: 32.5o E) and at the University of Nairobi, Kenya (Lat: 1.3o S; Lon: 36.8o E), both in East Africa. The analysis shows that the scintillations actually correspond to plasma bubbles. The occurrence of plasma bubbles at one station was correlated with those at the other station by using observations from the same satellite. It was noted that some bubbles develop at one station and presumably “die off” before reaching the other station. The paper also discusses the effects of the geomagnetic storm of the 24–25 October 2011 on the ionospheric TEC at the two East African stations. Reductions in the diurnal TEC at the two stations during the period of the storm were observed and the TEC depletions observed during that period showed much deeper depletions than on the non-storm days. The effects during the storm have been attributed to the uplift of the ionospheric plasma, which was then transported away from this region by diffusion along magnetic field lines.  相似文献   
355.
Over 60% clocks on board of the GPS satellites are working longer than their designed life. Therefore realizing their stabilities in a long time scales is essential to GPS navigation and positioning plus IGS time scale maintaining. IGS clock products from 2001 to 2010 are used to analyze the GPS satellite clock qualities such as frequency stabilities and clock noise level. We find out that for the clocks of Block IIA satellites the frequency stabilities and clock noise are 10 times worse than that of the Block IIR and IIR-M satellites. Moreover, the linear relationships between frequency stabilities and clock residuals have been deduced with an accuracy of better than 0.02 ns. Specially, it is noticed that the clock of the PRN27 is instable and the relationship between the frequency stability and residuals is at least a quadratic curve. Therefore, we suggested that GPS satellite clocks should be weighted by their quality levels in application, and the observations of the Block IIA should not be used for real-time positioning which required precision better than one meter.  相似文献   
356.
Acoustic-gravity waves (AGWs) observed in the upper atmosphere may be generated near the Earth’s surface due to a variety of meteorological sources. Two-dimensional simulations of vertical propagation and breaking of nonlinear AGWs in the atmosphere are performed. Forcing near the Earth’s surface is used as the AGW source in the model. We use a numerical method based on finite-difference analogues of fundamental conservation laws for solving atmospheric hydrodynamic equations. This approach selects physically correct generalized solutions of the wave hydrodynamic equations. Numerical simulations are performed in a representative region of the Earth’s atmosphere up to altitude 500 km. Vertical profiles of temperature, density, molecular viscosity and heat conductivity were taken from the standard atmosphere model MSIS-90 for January. Calculations were made for different amplitudes and frequencies of lower boundary wave forcing. It is shown that after activating the tropospheric wave forcing, the initial pulse of AGWs may very quickly propagate to altitudes of 100 km and above and relatively slowly dissipate due to molecular viscosity and heat conduction. This may increase the role of transient nonstationary waves in effective energy transport and variations of atmospheric parameters and gas admixtures in a broad altitude range.  相似文献   
357.
This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth’s J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.  相似文献   
358.
A very strong interplanetary and magnetospheric disturbance observed on 7–13 November 2004 can be regarded as one of the strongest events during the entire period of space observations. In this paper we report on the studies of cosmic ray cutoff rigidity variations during 7–13 November 2004 showing how storm conditions can affect the direct cosmic ray access to the inner magnetosphere. Effective cutoff rigidities have been calculated for selected points on the ground by tracing trajectories of cosmic ray particles through the magnetospheric magnetic field of the “storm-oriented” Tsyganenko 2003 model. Cutoff rigidity variations have also been determined by the spectrographic global survey method on the basis of experimental data of the neutron monitor network. Relations between the calculated and experimental cutoff rigidities and the geomagnetic Dst-index and interplanetary parameters have been investigated. Correlation coefficients between the cutoff rigidities obtained by the trajectory tracing method and the spectrographic global survey method have been found to be in the limits 0.76–0.89 for all stations except the low-latitude station Tokyo (0.35). The most pronounced correlation has been revealed between the cutoff rigidities that exhibited a very large variation of ∼1–1.5 GV during the magnetic storm and the Dst index.  相似文献   
359.
In the present paper the local-time variations in the disturbance of the geomagnetic-field horizontal component (H) for eight intense geomagnetic storms that occurred during the descending phase of solar cycle 23 have been analyzed. The study was based on the plot of contour lines of the H-depletion intensity in the plane local time versus universal time (LT–UT maps) with the objective of observing how the morphology and evolution of the ring current is mapped into the surface of the Earth in presence of intense geomagnetic storms.  相似文献   
360.
A major interest of radar altimetry over rivers is to monitor water resources and associated risk in basins where there is little or no conventional in situ data. The objective of the present study is to calibrate altimetry data in a place where conventional data are available, and use the results to estimate the potential error committed in the estimation of water levels in an ungauged or poorly gauged basin. The virtual stations extracted with Jason-2 in this study concern a very broad sample of river channel width and complexity. Minimum channel width has been estimated at 400 m. Unlike TOPEX/Poseidon (T/P), Jason-2 seems to have the capability to distinguish the river bed from its floodplain. The quality of the results obtained with Jason-2 is incomparably better than that obtained with T/P. Despite the fact that no absolute calibration has been assessed for river in this study, the bias calculated converge around 0, 35 m, which could be then the error estimated on the water stage derived from Jason-2 ranges, when no other validation is available. ICE3 algorithm seems to be performing as well as ICE1, and further research is needed to design retracking algorithm specifically for continental water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号