全文获取类型
收费全文 | 4473篇 |
免费 | 13篇 |
国内免费 | 7篇 |
专业分类
航空 | 2093篇 |
航天技术 | 1604篇 |
综合类 | 16篇 |
航天 | 780篇 |
出版年
2021年 | 44篇 |
2019年 | 25篇 |
2018年 | 104篇 |
2017年 | 73篇 |
2016年 | 76篇 |
2015年 | 39篇 |
2014年 | 130篇 |
2013年 | 138篇 |
2012年 | 143篇 |
2011年 | 193篇 |
2010年 | 127篇 |
2009年 | 216篇 |
2008年 | 293篇 |
2007年 | 128篇 |
2006年 | 107篇 |
2005年 | 138篇 |
2004年 | 117篇 |
2003年 | 153篇 |
2002年 | 89篇 |
2001年 | 153篇 |
2000年 | 74篇 |
1999年 | 99篇 |
1998年 | 120篇 |
1997年 | 87篇 |
1996年 | 91篇 |
1995年 | 124篇 |
1994年 | 121篇 |
1993年 | 64篇 |
1992年 | 95篇 |
1991年 | 53篇 |
1990年 | 36篇 |
1989年 | 88篇 |
1988年 | 40篇 |
1987年 | 42篇 |
1986年 | 36篇 |
1985年 | 96篇 |
1984年 | 86篇 |
1983年 | 75篇 |
1982年 | 86篇 |
1981年 | 118篇 |
1980年 | 41篇 |
1979年 | 36篇 |
1978年 | 32篇 |
1977年 | 25篇 |
1976年 | 30篇 |
1975年 | 23篇 |
1974年 | 22篇 |
1973年 | 24篇 |
1972年 | 24篇 |
1971年 | 21篇 |
排序方式: 共有4493条查询结果,搜索用时 15 毫秒
231.
S Silverstone M Nelson A Alling J Allen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(1):69-75
For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of "modular biospheres"--closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth(TM) which will simulate a life support system designed for a four person crew. The structure will consist of 6 x 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils. 相似文献
232.
High temperature effect on microflora of radish root-inhabited zone and nutrient solutions for radish growth. 总被引:2,自引:0,他引:2
E V Borodina L S Tirranen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(1):235-240
The effect of high temperatures (35 and 45 degrees C) on microflora of the root zone of radish plants grown in phytotron was evaluated by the response of microorganisms from 9 indicator groups. Phytotron air temperature elevated to 35 degrees C for 20 hours caused no significant changes in qualitative and quantitative composition of the root microflora in experimental plants. By the end of the experiment, the species diversity of microflora had changed. The amount of phytopathogenic microorganisms decreased which can be interpreted as more stable co-existence of microflora with plants. The numbers of microbes from other indicator groups was in dynamic equilibrium. The plants' condition did not deteriorate either. Exposure to the temperature of 45 degrees C for 7 hours have been found to change the numbers and species diversity in the radish root zone microflora. The microorganisms were observed to increase their total numbers at the expense of certain indicator groups. Bacteria increased spore forms at the stage of spores. Colon bacillus bacteria of increased their numbers by the end of experiment by an order. By the end of experiment the roots of experiment plants had microscopic fungi from Mucor, Aspergillus, Trichoderma, Cladosporium genera. The observed changes in the microbial complex seem to be associated with the changes of root emissions and general deterioration of the plants' condition. It is suggested that the response of the microorganisms can be indicative of the condition of plants under investigation. 相似文献
233.
C. S. Zerefos D. S. Balis P. Zanis C. Meleti A. F. Bais K. Tourpali D. Melas I. Ziomas E. Galani K. Kourtidis A. Papayannis Z. Gogosheva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(12):1955-1963
Intensive measurements of UV solar irradiance, total ozone and surface ozone were carried out during the solar eclipse of 11 August 1999 at Thessaloniki, Greece and Stara Zagora, Bulgaria, located very close to the footprint of the moon's shadow during the solar eclipse with the maximum coverage of the solar disk reaching about 90% and 96% respectively. It is shown that during the eclipse the diffuse component is reduced less compared to the decline of the direct solar irradiance at the shorter wavelengths. A 20-minute oscillation of erythemal UV-B solar irradiance was observed before and after the time of the eclipse maximum under clear skies, indicating a possible 20-minute fluctuation in total ozone presumably caused by the eclipse induced gravity waves. The surface ozone measurements at Thessaloniki display a decrease of around 10–15 ppbv during the solar eclipse. Similarly, ozone profile measurements with a lidar system indicate a decrease of ozone up to 2 km during the solar eclipse. The eclipse offered the opportunity to test our understanding of tropospheric ozone chemistry. The use of a chemical box model suggested that photochemistry can account for a significant portion of the observed surface ozone decrease. 相似文献
234.
V D Kern S Bhattacharya R N Bowman F M Donovan C Elland T F Fahlen B Girten M Kirven-Brooks K Lagel G B Meeker O Santos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):1023-1030
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners. 相似文献
235.
N S Pechurkin I M Shirobokova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(9):1497-1504
Closed Artificial ecosystems (CAES) have good prospects for wide use as new means for quantitative studies of different types of both natural ecosystems and man-made ones. The paper deals with the discussion of three points of CAES applications. The first one is of importance for theoretical ecology development and is connected with bringing together "holistic" and "merological" approaches in ecosystems studies. Using CAES, we can combine both approaches, taking into account the biotic turnover of limiting substrates which few in number even for complicated natural ecosystems. The second CAES use concerns the development of "ecosystems health" concept and application of a key-factor-approach for the indication and measurement of healthy unhealthy state and functioning of ecosystems or their links. The third use is more of an applied nature, oriented to the intensification of bioremediation or biodepollution processes in different types of ecosystems, including the global biosphere. Grant numbers: N 99-04-96017, N25. 相似文献
236.
The effects of microgravity on induced mutation in Escherichia coli and Saccharomyces cerevisiae. 总被引:6,自引:0,他引:6
A Takahashi K Ohnishi S Takahashi M Masukawa K Sekikawa T Amano T Nakano S Nagaoka T Ohnishi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):555-561
We examined whether microgravity influences the induced-mutation frequencies through in vivo experiments during space flight aboard the space shuttle Discovery (STS-91). We prepared dried samples of repair-deficient strains and parental strains of Escherichia (E.) coli and Saccharomyces (S.) cerevisiae given DNA damage treatment. After culture in space, we measured the induced-mutation frequencies and SOS-responses under microgravity. The experimental findings indicate that almost the same induced-mutation frequencies and SOS-responses of space samples were observed in both strains compared with the ground control samples. It is suggested that microgravity might not influence induced-mutation frequencies and SOS-responses at the stages of DNA replication and/or DNA repair. In addition, we developed a new experimental apparatus for space experiments to culture and freeze stocks of E. coli and S. cerevisiae cells. 相似文献
237.
238.
S.A. Washburn S.R. Blattnig R.C. Singleterry S.C. Westover 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA’s radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than ∼15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent. 相似文献
239.
I. Artamonova S. Veretenenko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Changes of troposphere pressure associated with short-time variations of galactic cosmic rays (GCRs) taking place in the Northern hemisphere’s cold months (October–March) were analyzed for the period 1980–2006, NCEP/NCAR reanalysis data being used. Noticeable pressure variations during Forbush decreases of GCRs were revealed at extratropical latitudes of both hemispheres. The maxima of pressure increase were observed on the 3rd–4th days after the event onsets over Northern Europe and the European part of Russia in the Northern hemisphere, as well as on the 4th–5th days over the eastern part of the South Atlantic opposite Queen Maud Land and over the d’Urville Sea in the Southern Ocean. According to the weather chart analysis, the observed pressure growth, as a rule, results from the weakening of cyclones and intensification of anticyclone development in these areas. The presented results suggest that cosmic ray variations may influence the evolution of extratropical baric systems and play an important role in solar-terrestrial relationships. 相似文献
240.
Muhammad Adnan S. Mahmood Anisa Qamar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The Zakharov–Kuznetzov (ZK) equation is derived for nonlinear electrostatic waves in a weakly magnetized plasma in the presence of anisotropic ion pressure and superthermal electrons. The anisotropic ion pressure is defined using Chew–Goldberger–Low (CGL) while a generalized Lorentzian (kappa) distribution is assumed for the non-thermal electrons. The standard reductive perturbation method (RPM) is employed to derive the two dimensional ZK equation for the dynamics of obliquely propagating low frequency ion acoustic wave. The influence of spectral index (kappa) of non-thermal electron on the soliton is discussed in the presence of anisotropic ion pressure in plasmas. It is found that ion pressure anisotropy and superthermality of electrons affect both the width and amplitude of the solitary waves. On the other hand the magnetic field is found to alter the dispersive property of the plasma only, and hence the width of the solitons is affected while the amplitude of the solitary waves is independent of external magnetic field. The numerical results are also presented for illustrations. 相似文献