全文获取类型
收费全文 | 122篇 |
免费 | 0篇 |
专业分类
航空 | 56篇 |
航天技术 | 56篇 |
航天 | 10篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 2篇 |
2017年 | 1篇 |
2016年 | 2篇 |
2015年 | 2篇 |
2014年 | 2篇 |
2013年 | 5篇 |
2011年 | 9篇 |
2010年 | 4篇 |
2009年 | 4篇 |
2008年 | 17篇 |
2007年 | 2篇 |
2006年 | 2篇 |
2005年 | 1篇 |
2004年 | 2篇 |
2003年 | 1篇 |
2002年 | 2篇 |
2001年 | 1篇 |
1999年 | 2篇 |
1997年 | 4篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1988年 | 1篇 |
1987年 | 4篇 |
1985年 | 10篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1982年 | 8篇 |
1981年 | 5篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1972年 | 2篇 |
排序方式: 共有122条查询结果,搜索用时 0 毫秒
101.
Anand Mahesh Russell Sara Lin Yangting Wadhwa Meenakshi Marhas Kuljeet Kaur Tachibana Shogo 《Space Science Reviews》2020,216(5):1-25
Space Science Reviews - Spectral retrieval has long been a powerful tool for interpreting planetary remote sensing observations. Flexible, parameterised, agnostic models are coupled with inversion... 相似文献
102.
Mesospheric OH temperatures: Simultaneous ground-based and SABER OH measurements over Millstone Hill
S.M. Smith J. Baumgardner C.J. Mertens J.M. Russell M.G. Mlynczak M. Mendillo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
We present rotational temperature measurements of the mesospheric OH emission layer using a meridional imaging spectrograph at Millstone Hill (42.6°N, 72.5°W). The system is equipped with a state-of-the-art bare-CCD detector and can yield simultaneous quasi-meridional images of the mesospheric OH and O2 intensity and temperature fields at 87 and 94 km altitude during the course of each night. A cross-validation study of the rotational OH temperature measurements obtained on 61 nights during the autumnal months of 2005–2007 was undertaken with near-simultaneous kinetic temperature measurements made by the SABER instrument aboard the NASA TIMED satellite during overpasses of Millstone Hill. Excellent agreement was obtained between the two datasets with the small differences being attributable to differences in the spatial and temporal averaging inherent between the two datasets. 相似文献
103.
104.
105.
106.
Examinations of the magnetohydrodynamic (MHD) equations across a bow shock are presented. These equations are written in the familiar Rankine–Hugoniot set, and an exact solution to this set is given which involves the upstream magnetosonic Mach number, plasma , polytropic index, and
B-v
, as a function of position along the shock surface. The asymptotic Mach cone angle of the shock surface is also given as a function of the upstream parameters, as a set of transcendental equations. The standoff position of a detached bow shock from an obstacle is also reviewed. In addition, a detailed examination of the hydrodynamic equations along the boundary of the obstacle is performed. Lastly, the MHD relations along the obstacle surface are examined, for specific orientations of the upstream interplanetary magnetic field (IMF) in relation to the upstream flow velocity vector. 相似文献
107.
The study of Extremely-Low-Frequency (ELF) and Very-Low-Frequency (VLF) waves in space has been intensively pursued in the past decade. Search coil magnetometers, magnetic loop antennas, and electric dipole antennas have been carried on board many spacecraft. The measurements performed by these instruments have revealed a multitude of wave phenomena, whose study in turn is providing a wealth of information on the physics of the magnetospheric and ionospheric plasma. Two classes of wave phenomena are observed: whistlers and emissions. The observed whistler phenomena include: multiple hop ducted whistlers, ion-cutoff whistlers, ion cyclotron whistlers, subprotonospheric whistlers, magnetospherically reflected whistlers and walking trace whistlers.The emissions observed at high altitudes near the magnetic equator differ in many respects from those observed at low altitudes near the ionosphere. At high altitudes, inside the plasmasphere ELF hiss is the dominant emission and outside the plasmasphere chorus is the dominant emission. Also seen is a sub-LHR hiss band in the outer plasmasphere near the equator, and high pass noise and broadband noise in the outer nightside magnetosphere. At low altitude both ELF hiss and chorus are present but, here, ELF hiss is the dominant emission even outside the plasmasphere. Additional emissions, specific to low altitudes, such as VLF hiss and LHR noise are also observed. Although the observations of these phenomena by spacecraft have been complemented by many ground-based and rocket borne studies as well as by spacecraft observations of man-made signals, this paper reviews only satellite observations of signals of natural origin. 相似文献
108.
C.T. Russell M.A. Saunders J.G. Luhmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(9):177-184
Despite its lack of an intrinsic magnetic field Venus has a well defined magnetotail, containing about 3 megawebers of magnetic flux in a tail about 4 RV across with perhaps a slightly elliptical cross section. This tail arises through the mass-loading of magnetic flux tubes passing by the planet. Mass-loading can occur due to charge exchange and photo-ionization as well as from the diffusion of magnetic field into the ionosphere. Various evidence exists for the mass-loading process, including the direct observation of the picked up ions with both the Venera and Pioneer Venus plasma analyzers. 相似文献
109.
110.
The study of ULF waves in space has been in progress for about 12 years. However, because of numerous observational difficulties the properties of the waves in this frequency band (10-3 to 1 Hz) are poorly known. These difficulties include the nature of satellite orbits, telemetry limitations on magnetometer frequency response and compromises between dynamic range and resolution. Despite the paucity of information, there is increasing recognition of the importance of these measurements in magnetospheric processes. A number of recent theoretical papers point out the roles such waves play in the dynamic behavior of radiation belt particles.At the present time the existing satellite observations of ULF waves suggest that the level of geomagnetic activity controls the types of waves which occur within the magnetosphere. Consequently, we consider separately quiet times, times of magnetospheric substorms and times of magnetic storms. Within each of these categories there are distinctly different wave modes distinguished by their polarization: either transverse or parallel to the ambient field. In addition, these wave phenomena occur in distinct frequency bands. In terms of the standard nomenclature of ground micropulsation studies ULF wave types observed in the magnetosphere include quiet time transverse — Pc 1, Pc 3, Pc 4, Pc 5 quiet time compressional — Pc 1 and Pi 1; substorm compressional Pi 1 and Pi 2; storm transverse — Pc 1; storm compressional Pc 4, 5. The satellite observations are not yet sufficient to determine whether the various bands identified in the ground data are equally appropriate in space.Publication No. 982. Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Calif. 90024. 相似文献