首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18190篇
  免费   87篇
  国内免费   156篇
航空   9990篇
航天技术   5383篇
综合类   305篇
航天   2755篇
  2021年   167篇
  2018年   202篇
  2016年   162篇
  2014年   445篇
  2013年   530篇
  2012年   427篇
  2011年   611篇
  2010年   431篇
  2009年   771篇
  2008年   814篇
  2007年   396篇
  2006年   462篇
  2005年   419篇
  2004年   424篇
  2003年   509篇
  2002年   480篇
  2001年   549篇
  2000年   374篇
  1999年   461篇
  1998年   423篇
  1997年   333篇
  1996年   373篇
  1995年   438篇
  1994年   413篇
  1993年   356篇
  1992年   301篇
  1991年   250篇
  1990年   240篇
  1989年   386篇
  1988年   203篇
  1987年   232篇
  1986年   234篇
  1985年   644篇
  1984年   518篇
  1983年   408篇
  1982年   486篇
  1981年   611篇
  1980年   245篇
  1979年   186篇
  1978年   189篇
  1977年   145篇
  1976年   155篇
  1975年   189篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   144篇
  1969年   148篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
For the first time, the spin axis orientation of an inactive box-wing geosynchronous satellite has been estimated from ground-based optical photometric observations of Echostar-2’s specular reflections. Recent photometric light curves obtained of Echostar-2 over four years suggest that unusually bright and brief specular reflections were occurring twice within an observed spin period. These bright and brief specular reflections suggested two satellite surfaces with surface normals separated by approximately 180°. The geometry between the satellite, the Sun, and the observing location at the time of each of the brightest observed reflections, was used to estimate Echostar-2’s equatorial spin axis orientation coordinates. When considering prograde and retrograde rotation, Echostar-2’s spin axis orientation was estimated to have been located within 30° of either equatorial coordinate pole. Echostar-2’s spin axis was observed to have moved approximately 180° in right ascension, within a time span of six months, suggesting a roughly one year spin axis precession period about the satellite’s angular momentum vector.  相似文献   
2.
The present work is an attempt to evaluate the impact of changing space weather condition over sub-auroral ionosphere during high solar activity year 2014. In view of this, the GPS based TEC along with Ionosonde data over Indian permanent scientific base “Maitri”, Antarctica (70°46′00″S, 11°43′56″E) has been utilized. The results suggested that the nature of ionospheric responses to the geomagnetic disturbances not only depended upon the status of high latitudinal electro-dynamic processes but also influenced by the seasonal variations. The results revel both negative and positive type of ionospheric response in a single year but during different seasons. The study suggested that the combination of equator-ward plasma transportation along with ionospheric compositional changes causes a negative ionospheric impact especially during summer and equinox seasons. However, the combination of pole-ward contraction of the oval region along with particle precipitation may lead to exhibit positive ionospheric response during the winter season. The plasma transportation direction has been validated with the help of convection boundary (HM boundary) deduced with the help of SuperDARN observations. The ground based ionosonde observations clearly provided the evidence of deep penetration of high energetic particles up to the E-layer heights which results a sudden and strong appearance of E-layer. The strengthening of E-layer is responsible for modification of auroral electrojet and field-aligned current system. Also, the sudden appearance of E-layer along with a decrease in F-layer electron density suggested the dominance of NO+ over O+ in a considered region under geomagnetic disturbed condition.  相似文献   
3.
Propellantless continuous-thrust propulsion systems, such as electric solar wind sails, may be successfully used for new space missions, especially those requiring high-energy orbit transfers. When the mass-to-thrust ratio is sufficiently large, the spacecraft trajectory is characterized by long flight times with a number of revolutions around the Sun. The corresponding mission analysis, especially when addressed within an optimal context, requires a significant amount of simulation effort. Analytical trajectories are therefore useful aids in a preliminary phase of mission design, even though exact solution are very difficult to obtain. The aim of this paper is to present an accurate, analytical, approximation of the spacecraft trajectory generated by an electric solar wind sail with a constant pitch angle, using the latest mathematical model of the thrust vector. Assuming a heliocentric circular parking orbit and a two-dimensional scenario, the simulation results show that the proposed equations are able to accurately describe the actual spacecraft trajectory for a long time interval when the propulsive acceleration magnitude is sufficiently small.  相似文献   
4.
5.
The earthquake (EQ) time coupling processes between equator-low-mid latitude ionosphere are complex due to inherent dynamical status of each latitudinal zone and qualified geomagnetic roles working in the system. In an attempt to identify such process, the paper presents temporal and latitudinal variations of ionization density (foF2) covering 45°N to 35°S, during a number of earthquake events (M?>?5.5). The approaches adopted for extraction of features by the earthquake induced preparatory processes are discussed in the paper through identification of parameters like the ‘EQ time modification in density gradient’ defined by δ?=?(foF2 max???foF2 min)∕τmm, where τmm – time span (in days) between EQ modified density maximum and minimum, and the Earthquake time Equatorial Anomaly, i.e. EEA, one of the most significant phenomenon which develops even during night time irrespective of epicenter position. Based on the observations, the paper presents the seismic time coupling dynamics through anomaly like manifestations between equator, low and mid latitude ionosphere bringing in the global Total Electron Content (TEC) features as supporting indices.  相似文献   
6.
The Earth and the near interplanetary medium are affected by the Sun in different ways. Those processes generated in the Sun that induce perturbations into the Magnetosphere-Ionosphere system are called geoeffective processes and show a wide range of temporal variations, like the 11-year solar cycle (long term variations), the variation of ~27?days (recurrent variations), solar storms enduring for some days, particle acceleration events lasting for some hours, etc.In this article, the periodicity of ~27?days associated with the solar synodic rotation period is investigated. The work is mainly focused on studying the resulting 27-day periodic signal in the magnetic activity, by the analysis of the horizontal component of the magnetic field registered on a set of 103 magnetic observatories distributed around the world. For this a new method to isolate the periodicity of interest has been developed consisting of two main steps: the first one consists of removing the linear trend corresponding to every calendar year from the data series, and the second one of removing from the resulting series a smoothed version of it obtained by applying a 30-day moving average. The result at the end of this process is a data series in which all the signal with periods larger than 30?days are canceled.The most important characteristics observed in the resulting signals are two main amplitude modulations: the first and most prominent related to the 11-year solar cycle and the second one with a semiannual pattern. In addition, the amplitude of the signal shows a dependence on the geomagnetic latitude of the observatory with a significant discontinuity at approx. ±60°.The processing scheme was also applied to other parameters that are widely used to characterize the energy transfer from the Sun to the Earth: F10.7 and Mg II indices and the ionospheric vertical total electron content (vTEC) were considered for radiative interactions; and the solar wind velocity for the non-radiative interactions between the solar wind and the magnetosphere. The 27-day signal obtained in the magnetic activity was compared with the signals found in the other parameters resulting in a series of cross-correlations curves with maximum correlation between 3 and 5?days of delays for the radiative and between 0 and 1?days of delay for the non-radiative parameters. This result supports the idea that the physical process responsible for the 27-day signal in the magnetic activity is related to the solar wind and not to the solar electromagnetic radiation.  相似文献   
7.
Pollock  C.J.  C:son-Brandt  P.  Burch  J.L.  Henderson  M.G.  Jahn  J.-M.  McComas  D.J.  Mende  S.B.  Mitchell  D.G.  Reeves  G.D.  Scime  E.E.  Skoug  R.M.  Thomsen  M.  Valek  P. 《Space Science Reviews》2003,109(1-4):155-182
Energetic Neutral Atom (ENA) imaging has contributed substantially to substorm research. This technique has allowed significant advances in areas such as observation and quantification of injected particle drift as a function of energy, observation of dynamics in the tail that are directly related to the effects of imposed (growth phase) and induced (expansion phase) electric fields on the plasma, the prompt extraction of oxygen from the ionosphere during substorms, the relationship between storms and substorms, and the timing of substorm ENA signatures. We present discussion of the advantages and shortcomings of the ENA technique for studying space plasmas. Although the technique is in its infancy, it is yielding results that enrich our understanding of the substorm process and its effects.  相似文献   
8.
This paper reviews the results of the thermal and static analysis of small motor aerospace technology (SMART) propulsion system, constituted of a microthrusters array realised by MEMS technology on silicon wafers. This system has been studied using FEM (NASTRAN) and the results have been verified by the electro-thermic analogy and the FDM method, using, respectively, SPICE and MATLAB codes. The simulation results demonstrated the feasibility of SMART systems for aerospace applications such as attitude control and deorbiting missions for small satellite station-keeping. A theoretical impulse of 20 mNs has been calculated for the SMART system.  相似文献   
9.
Elemental and Isotopic Abundances of Carbon and Nitrogen in Meteorites   总被引:1,自引:0,他引:1  
Grady  Monica M.  Wright  Ian P. 《Space Science Reviews》2003,106(1-4):231-248
We have taken an inventory of the elemental and isotopic abundances of major carbon- and nitrogen-bearing components in different groups of meteorites. Primary phases, inherited from the solar nebula, are frequently isotopically heterogeneous, and surprisingly resistant to modification through parent body processing. Even melted and recrystallised meteorites retain primordial carbon and nitrogen isotopic signatures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
10.
Plants have evolved under the influence of UV-B radiation and have acquired systems for monitoring it and investing appropriate resources for protection against it, i.e., filters, quenchers of radicals and reactive oxygen species, and repair systems. An hypothesis for how plants monitor radiation has been presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号