首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2459篇
  免费   10篇
  国内免费   10篇
航空   1211篇
航天技术   856篇
综合类   10篇
航天   402篇
  2021年   25篇
  2019年   15篇
  2018年   49篇
  2017年   25篇
  2016年   28篇
  2015年   17篇
  2014年   50篇
  2013年   68篇
  2012年   53篇
  2011年   95篇
  2010年   66篇
  2009年   100篇
  2008年   108篇
  2007年   63篇
  2006年   57篇
  2005年   64篇
  2004年   72篇
  2003年   77篇
  2002年   38篇
  2001年   63篇
  2000年   46篇
  1999年   48篇
  1998年   68篇
  1997年   48篇
  1996年   71篇
  1995年   84篇
  1994年   59篇
  1993年   50篇
  1992年   64篇
  1991年   34篇
  1990年   20篇
  1989年   50篇
  1988年   23篇
  1987年   20篇
  1986年   22篇
  1985年   87篇
  1984年   63篇
  1983年   59篇
  1982年   68篇
  1981年   79篇
  1980年   22篇
  1979年   26篇
  1978年   31篇
  1977年   26篇
  1976年   22篇
  1975年   21篇
  1974年   20篇
  1972年   15篇
  1970年   19篇
  1969年   19篇
排序方式: 共有2479条查询结果,搜索用时 15 毫秒
951.
We consider transfers with low thrust in an arbitrary field of forces. The modified method of transporting trajectory [1–4] is used for optimization of the transfers. The complexity of finding the transporting trajectory of a preset type can be the main obstacle to application of this method. This challenge is solved for the three-body problem in the Hill motion model. Numerical analysis of the method is performed using an example of the transfers to halo-orbits around the solar-terrestrial libration points.  相似文献   
952.
The propagation of extremely low frequency (ELF, 3 Hz to 3 kHz) radio waves and resonant phenomena in the spherical Earth-ionosphere cavity has been studied for almost fifty years. When such a cavity is excited by naturally occurring broadband electromagnetic radiation, resonances can develop if the equatorial circumference is approximately equal to an integral number of wavelengths of the propagating electromagnetic waves; these are termed Schumann resonances. They provide information not only about thunderstorm and lightning activity on the Earth, and their relation to climate, but also on the properties of the low ionosphere. Similar investigations can be performed for any other planet or satellite, provided that it has an ionosphere. There are important differences between the Earth and other celestial bodies regarding, for example, the surface conductivity, the atmospheric conductivity profile, the geometry of the ionospheric cavity, and the sources of excitation. To a first approximation, the size of the cavity defines the fundamental resonant frequency, the atmospheric electron density profile controls the wave attenuation, the nature of the sources influences the electromagnetic field distribution in the cavity, and the body surface conductivity indicates to what extent the subsurface can be explored. The frequencies and attenuation rates of the principal eigenmodes depend upon the electrical properties of the cavity. Instruments that monitor the electromagnetic environment in the ELF range on the surface, on balloons, or on descent probes provide unique information on the cavity. In this paper, we present Schumann resonance models for selected inner planets, some gaseous giant planets and a few of their satellites. We review the crucial parameters of ELF electromagnetic waves in their atmospheric cavities, namely the electric and magnetic field spectra, their eigenfrequencies, and the associated Q-factors (damping factors). Then we present important information on theoretical developments, on a general model that uses the finite element method and on the parameterization of the cavity. Next we show the distinctiveness of each planetary environment, and discuss how ELF radio wave propagation can contribute to an assessment of the major characteristics of those planetary environments.  相似文献   
953.
Atmospheric Escape and Evolution of Terrestrial Planets and Satellites   总被引:1,自引:1,他引:0  
The origin and evolution of Venus’, Earth’s, Mars’ and Titan’s atmospheres are discussed from the time when the active young Sun arrived at the Zero-Age-Main-Sequence. We show that the high EUV flux of the young Sun, depending on the thermospheric composition, the amount of IR-coolers and the mass and size of the planet, could have been responsible that hydrostatic equilibrium was not always maintained and hydrodynamic flow and expansion of the upper atmosphere resulting in adiabatic cooling of the exobase temperature could develop. Furthermore, thermal and various nonthermal atmospheric escape processes influenced the evolution and isotope fractionation of the atmospheres and water inventories of the terrestrial planets and Saturn’s large satellite Titan efficiently.  相似文献   
954.
The Deep Impact mission revealed many properties of comet Tempel 1, a typical comet from the Jupiter family in so far as any comet can be considered typical. In addition to the properties revealed by the impact itself, numerous properties were also discovered from observations prior to the impact just because they were the types of observations that had never been made before. The impact showed that the cometary nucleus was very weak at scales from the impactor diameter (~1 m) to the crater diameter (~100 m) and suggested that the strength was low at much smaller scales as well. The impact also showed that the cometary nucleus is extremely porous and that the ice was close to the surface but below a devolatilized layer with thickness of order the impactor diameter. The ambient observations showed a huge range of topography, implying ubiquitous layering on many spatial scales, frequent (more than once a week) natural outbursts, many of them correlated with rotational phase, a nuclear surface with many features that are best interpreted as impact craters, and clear chemical heterogeneity in the outgassing from the nucleus.  相似文献   
955.
For decades, wind tunnel testing has been conducted in test section environments that have not been adequately or consistently documented. Since wind tunnel flow quality can adversely affect test results, accurate and consistent flow quality measurements are required, along with an understanding of the sources, characteristics, and management of flow turbulence. This paper will review turbulence measurement techniques and data obtained in subsonic, transonic, and supersonic test facilities as they relate to the determination and assessment of wind tunnel flow quality. The principles and practical application of instrumentation used in the measurement and characterization of wind tunnel turbulence will be described. Techniques used for the identification of the sources of wind tunnel disturbances, and the performance of turbulence suppression devices will be outlined. These test techniques will be illustrated with extensive measurements obtained in a number of test facilities. The measurements will provide comprehensive turbulence data that are vital to the assessment and management of flow quality. Procedures designed to assess the potential influence of adverse flow quality on wind tunnel model test performance will also be discussed.  相似文献   
956.
Matched subspace CFAR detection of hovering helicopters   总被引:4,自引:0,他引:4  
A constant false alarm rate (CFAR) strategy for detecting a Gaussian distributed random signal against correlated non-Gaussian clutter is developed. The proposed algorithm is based on Scharf's matched subspace detector (MSD) and has the CFAR property with respect to the clutter amplitude probability density function (apdf), provided that the clutter distribution belongs to the compound-Gaussian family and the clutter covariance matrix is known to within a scale factor. Analytical expressions of false alarm and detection probabilities are derived. An application to the problem of detecting hovering helicopters against vegetated ground clutter is reported  相似文献   
957.
958.
Observations of unusually large magnetic fields in the ionosphere indicate periods of maximum stress on Titan’s ionosphere and potentially of the strongest loss rates of ionospheric plasma. During Titan flyby T42, the observed magnetic field attained a maximum value of 37 nT between an altitude of 1200 and 1600 km, about 20 nT stronger than on any other Titan pass and close to five times greater in magnetic pressure. The strong fields occurred near the corotation-flow terminator rather than at the sub-flow point, suggesting that the flow which magnetized the ionosphere was from a direction far from corotation and possibly towards Saturn. Extrapolation of solar wind plasma conditions from Earth to Saturn using the University of Michigan MHD code predicts an enhanced solar wind dynamic pressure at Saturn close to this time. Cassini’s earlier exits from Saturn’s magnetosphere support this prediction because the Cassini Plasma Spectrometer instrument saw a magnetopause crossing three hours before the strong field observation. Thus it appears that Titan’s ionosphere was magnetized when the enhanced solar wind dynamic pressure compressed the Saturnian magnetosphere, and perhaps the magnetosheath magnetic field, against Titan. The solar wind pressure then decreased, leaving a strong fossil field in the ionosphere. When observed, this strong magnetic flux tube had begun to twist, further enhancing its strength.  相似文献   
959.
We present and discuss here the observations of a small long duration GOES B-class flare associated with a quiescent filament eruption, a global EUV wave and a CME on 2011 May 11. The event was well observed by the Solar Dynamics Observatory (SDO), GONG Hα, STEREO and Culgoora spectrograph. As the filament erupted, ahead of the filament we observed the propagation of EIT wave fronts, as well as two flare ribbons on both sides of the polarity inversion line (PIL) on the solar surface. The observations show the co-existence of two types of EUV waves, i.e., a fast and a slow one. A type II radio burst with up to the third harmonic component was also associated with this event. The evolution of photospheric magnetic field showed flux emergence and cancellation at the filament site before its eruption.  相似文献   
960.
The active geophysical rocket experiment North Star was carried out in the auroral ionosphere on January 22, 1999, at the Poker Flat Research Range (Alaska, USA) using the American research rocket Black Brant XII with explosive plasma generators on board. Separable modules with scientific equipment were located at distances of from 170 to 1595 m from the plasma source. The experiment continued the series of the Russian–American joint experiments started by the Fluxus experiment in 1997. Two injections of aluminum plasma across the magnetic field were conducted in the North Star experiment. They were different, since in the first injection a neutral gas cloud was formed in order to increase the plasma ionization due to the interaction of neutrals of the jet and cloud. The first and second injections were conducted at heights of 360 and 280 km, respectively. The measurements have shown that the charged particle density was two orders of magnitude higher in the experiment with the gas release. The magnetic field in the first injection was completely expelled by the dense plasma of the jet. The displacement of the magnetic field in the second injection was negligible. The plasma jet velocity in both injections decreased gradually due to its interaction with the geomagnetic field. One of the most interesting results of the experiment was the conservation of high plasma density during the propagation of the divergent jet to considerable distances. This fact can be explained by the action of the critical ionization velocity mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号