首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2459篇
  免费   10篇
  国内免费   10篇
航空   1211篇
航天技术   856篇
综合类   10篇
航天   402篇
  2021年   25篇
  2019年   15篇
  2018年   49篇
  2017年   25篇
  2016年   28篇
  2015年   17篇
  2014年   50篇
  2013年   68篇
  2012年   53篇
  2011年   95篇
  2010年   66篇
  2009年   100篇
  2008年   108篇
  2007年   63篇
  2006年   57篇
  2005年   64篇
  2004年   72篇
  2003年   77篇
  2002年   38篇
  2001年   63篇
  2000年   46篇
  1999年   48篇
  1998年   68篇
  1997年   48篇
  1996年   71篇
  1995年   84篇
  1994年   59篇
  1993年   50篇
  1992年   64篇
  1991年   34篇
  1990年   20篇
  1989年   50篇
  1988年   23篇
  1987年   20篇
  1986年   22篇
  1985年   87篇
  1984年   63篇
  1983年   59篇
  1982年   68篇
  1981年   79篇
  1980年   22篇
  1979年   26篇
  1978年   31篇
  1977年   26篇
  1976年   22篇
  1975年   21篇
  1974年   20篇
  1972年   15篇
  1970年   19篇
  1969年   19篇
排序方式: 共有2479条查询结果,搜索用时 328 毫秒
461.
462.
This paper analyses the fuel consumption of interferometric radar missions employing small satellite formations like, e.g., Cross-track Pendulum, Cartwheel, CarPe, or Trinodal Pendulum. Individual analytic expressions are provided for each of the following contributions: separation from a simultaneously injected master satellite, formation set-up, orbit maintenance, formation maintenance, and distance maintenance. For this, a general system of equations is derived describing the relative motion of the small satellites in a co-rotating reference frame. The transformation into Keplerian elements is carried out. To evaluate fuel consumption, three master satellites are assumed in different orbital heights, which are typical for Earth observation missions. The size of the exemplarily analysed formations is defined by remote sensing aspects and their respective fuel requirements are estimated. Furthermore, a collision avoidance concept is introduced, which includes a formation separation and formation set-up after a desired time period.  相似文献   
463.
This paper reports the main characteristics of the deep space transponder (DST) equipment that has been designed, developed and tested by Thales Alenia Space—Italy (TAS-I) for the European Space Agency (ESA) BepiColombo mission to Mercury.  相似文献   
464.
MICROSCOPE is a French space mission for testing the weak equivalence principle (WEP). The mission goal is the determination of the Eötvös parameter η with an accuracy of 10?15. The French space agency CNES is responsible for the satellite which is developed and produced within the Myriade series. The satellite's payload T-SAGE (Twin Space Accelerometer for Gravitation Experimentation) is developed and built by the French institute ONERA. It consists of two high-precision capacitive differential accelerometers. One accelerometer is used as reference sensor with two test masses of platinum, the science sensor contains a platinum and a titanium proof mass. The detection of the test mass movement and their control is done via a complex electrode system. As a member of the MICROSCOPE performance team, the German department ZARM will be involved in the data analysis of the MICROSCOPE mission. For this purpose, mission simulations and the preparation of the mission data evaluation in close cooperation with the French partners CNES, ONERA and OCA are realised. The development status of the simulation tool which will represent the complex spacecraft dynamics and all error sources in order to design and test data reduction procedures is presented and some features are discussed in detail.  相似文献   
465.
466.
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL.  相似文献   
467.
The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264?km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.  相似文献   
468.
We present a compact atomic frequency standard based on the interrogation of magnetically trapped 87Rb atoms. Two photons, in the microwave and radiofrequency domain excite the atomic transition. At a magnetic field of 3.23 G this transition from ∣F = 1, mF = −1〉 to ∣F = 2, mF = 1〉 is 1st order insensitive to magnetic field variations. Long Ramsey interrogation times can thus be achieved, leading to a projected stability in the low 10−13 at 1 s. This makes this device a viable alternative to LITE and HORACE as a good candidate for replacing or complementing the rubidium frequency standards and passive hydrogen masers already on board of the GPS, GLONASS, and GALILEO satellites. Here we present preliminary results. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package potentially as small as (5 cm)3. We describe the experimental apparatus and show preliminary Ramsey fringes of 1.25 Hz linewidth. We also show a preliminary frequency stability σy = 1.5 × 10−12τ−1/2 for 10 < τ < 103 s. This represents one order of magnitude improvement with respect to previous experiments.  相似文献   
469.
We consider a special relativistic effect, known as the Poynting–Robertson effect, on various types of trajectories of solar sails. Since this effect occurs at order v?/c, where v? is the transversal speed relative to the sun, it can dominate over other special relativistic effects, which occur at order v2/c2. While solar radiation can be used to propel the solar sail, the absorbed portion of it also gives rise to a drag force in the transversal direction. For escape trajectories, this diminishes the cruising velocity, which can have a cumulative effect on the heliocentric distance. For a solar sail directly facing the sun in a bound orbit, the Poynting–Robertson effect decreases its orbital speed, thereby causing it to slowly spiral towards the sun. We also consider this effect for non-Keplerian orbits in which the solar sail is tilted in the azimuthal direction. While in principle the drag force could be counter-balanced by an extremely small tilt of the solar sail in the polar direction, periodic adjustments are more feasible.  相似文献   
470.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号