首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   0篇
航空   53篇
航天技术   48篇
航天   33篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   9篇
  2010年   4篇
  2009年   7篇
  2008年   14篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   4篇
  1989年   3篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1971年   2篇
  1970年   1篇
  1968年   4篇
  1967年   3篇
  1965年   1篇
排序方式: 共有134条查询结果,搜索用时 31 毫秒
121.
The amplitude and power of a large family of radio signals are observed to have log-normal probability density functions. Among these are signals propagated through random inhomogeneous media, a notable example being low frequency atmospheric radio noise. Of greater importance are certain radar targets that have been observed to have essentially log-normal density functions. Both ships and space vehicles may fall into this category. Curves of probability of detection vs. signal-to-noise ratio for the case of log-normal signals in Gaussian noise have been computed and are presented in this paper. The curves apply for square-law detection with varying degrees of postdetection linear integration. Both fully correlated and completely uncorrelated fluctuating signals are considered. It is shown that for log-normal signal distributions having large variances, the probability of detection differs significantly from that obtained using curves based on an assumed Rayleigh signal distribution.  相似文献   
122.
Nascap-2k is the updated version of the NASCAP/GEO spacecraft charging analysis code. In addition to packaging the physical content of NASCAP/GEO in a modern way, Nascap-2k incorporates other plasma analysis codes (in particular, the DynaPAC code) in order to extend its applicability to a wide variety of plasma environments. Nascap-2k also includes an interactive Object Toolkit for defining spacecraft surface models for analysis. In this paper we focus on the tenuous plasma charging capabilities of the code, with application to DSCS-III (geosynchronous environment), STEREO (solar wind environment) and MESSENGER (solar wind environment near 0.4 AU).  相似文献   
123.
As space faring nations consider manned and unmanned missions to the Moon, there is a growing need to develop high fidelity lunar regolith simulants that can accurately reproduce the properties and behavior of lunar regolith. Such simulants will be employed to verify the performance of equipment, mechanisms, structures and processes to be used on the lunar surface. One of the significant limitations of current terrestrial-based simulants, such as the popular mare simulant, JSC-1A, is the lack of agglutinates. This paper investigates the production of a lunar mare agglutinate simulant based on JSC-1A. A modified plasma processing technique was used to expose the JSC-1A regolith simulant to high temperatures and transform it to predominantly a glassy phase. Detailed characterization results are presented to confirm that the agglutinate simulant material produced during this investigation reasonably satisfies the primary requirements of an agglutinate simulant such as amorphous/crystalline content, particle size, morphology, vesicular structure, chemistry, and presence of nanophase elemental Fe.  相似文献   
124.
This paper presents the meteor observations obtained using two radars installed at Davis (68.6°S, 78.0°E), Antarctica. The Davis MST radar was installed primarily for observation of polar mesosphere summer echoes, with additional transmit and receive antennas installed to allow all-sky interferometric meteor radar observations. The Davis meteor radar performs dedicated all-sky interferometric meteor radar observations. The annual count rate variation for both radars peaks in mid-summer and minimizes in early Spring. The height distribution shows significant annual variation, with minimum (maximum) peak heights and maximum (minimum) height widths in early Spring (mid-summer). Although the meteor radar count rate and height distribution variations are consistent with a similar frequency meteor radar operating at Andenes (69.3°N), the peak heights show a much larger variation than at Andenes, while the count rate maximum-to-minimum ratios show a much smaller variation. Investigation of the effects of the temporal sampling parameters suggests that these differences are consistent with the different temporal sampling strategies used by the Davis and Andenes meteor radars. The new radiant mapping procedure of [Jones, J., Jones, W., Meteor radiant activity mapping using single-station radar observations, Mon. Not. R. Astron. Soc., 367(3), 1050–1056, doi: 10.1111/j.1365-2966.2006.10025.x, 2006] is investigated. The technique is used to detect the Southern delta-Aquarid meteor shower, and a previously unknown weak shower. Meteoroid speeds obtained using the Fresnel transform are presented. The diurnal, annual, and height variation of meteoroid speeds are presented, with the results found to be consistent with those obtained using specular meteor radars. Meteoroid speed estimates for echoes identified as Southern delta-Aquarid and Sextantid meteor candidates show good agreement with the theoretical pre-atmospheric speeds of these showers (41 km s−1 and 32 km s−1, respectively). The meteoroid speeds estimated for these showers show decreasing speed with decreasing height, consistent with the effects of meteoroid deceleration. Finally, we illustrate how the new radiant mapping and meteoroid speed techniques can be combined for unambiguous meteor shower detection, and use these techniques to detect a previously unknown weak shower.  相似文献   
125.
126.
The International Heliophysical Year (IHY) aims to advance our understanding of the fundamental processes that govern the Sun, Earth, and heliosphere. The IHY Education and Outreach Program is dedicated to inspiring the next generation of space and Earth scientists as well as spreading the knowledge, beauty, and relevance of our solar system to the people of the world. In our Space Weather Monitor project we deploy a global network of sensors to high schools and universities to provide quantitative diagnostics of solar-induced ionospheric disturbances, thunderstorm intensity, and magnetospheric activity. We bring real scientific instruments and data in a cost-effective way to students throughout the world. Instruments meet the objectives of being sensitive enough to produce research-quality data, yet inexpensive enough for placement in high schools and universities. The instruments and data have been shown to be appropriate to, and usable by, high school age and early university students. Data contributed to the Stanford data center is openly shared and partnerships between groups in different nations develop naturally. Students and teachers have direct access to scientific expertise.  相似文献   
127.
Remote sensing of aerosol and radiation from geostationary satellites   总被引:2,自引:0,他引:2  
The paper presents a high-level overview of current and future remote sensing of aerosol and shortwave radiation budget carried out at the US National Oceanic and Atmospheric Administration (NOAA) from the US Geostationary Operational Environmental Satellite (GOES) series. The retrievals from the current GOES imagers are based on physical principles. Aerosol and radiation are estimated in separate processing from the comparison of satellite-observed reflectances derived from a single visible channel with those calculated from detailed radiative transfer. The radiative transfer calculation accounts for multiple scattering by molecules, aerosol and cloud and absorption by the major atmospheric gases. The retrievals are performed operationally every 30 min for aerosol and every hour for radiation for pixel sizes of 4-km (aerosol) and 15- to 50-km (radiation). Both retrievals estimate the surface reflectance as a byproduct from the time composite of clear visible reflectances assuming fixed values of the aerosol optical depth. With the launch of GOES-R NOAA will begin a new era of geostationary remote sensing. The Advanced Baseline Imager (ABI) onboard GOES-R will offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) flown on the NASA Earth Observing System (EOS) satellites. The ABI aerosol algorithm currently under development uses a multi-channel approach to estimate the aerosol optical depth and aerosol model simultaneously, both over water and land. Its design is strongly inspired by the MODIS aerosol algorithm. The ABI shortwave radiation budget algorithm is based on the successful GOES Surface and Insolation Product system of NOAA and the NASA Clouds and the Earth’s Radiant Energy System (CERES), Surface and Atmospheric Radiation Budget (SARB) algorithm. In all phases of the development, the algorithms are tested with proxy data generated from existing satellite observations and forward simulations. Final assessment of the performance will be made after the launch of GOES-R scheduled in 2012.  相似文献   
128.
There exists a population of defunct satellites in the geo-stationary arc that potentially pose a hazard to current and future operational satellites. These drifting, non-station-kept objects have a variety of ages and sizes, and many are trapped in libration orbits around the Earth?s two gravitational potential wells (the non-spherical nature of the Earth gives rise to two geo-potential wells or “stable points” that affect objects in geostationary and geosynchronous orbits), whereas others were boosted to higher altitudes into so-called “graveyard” orbits.  相似文献   
129.
Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a NASA Explorer Mission-of-Opportunity to stereoscopically image the Earth’s magnetosphere for the first time. TWINS extends our understanding of magnetospheric structure and processes by providing simultaneous Energetic Neutral Atom (ENA) imaging from two widely separated locations. TWINS observes ENAs from 1–100 keV with high angular (~4°×4°) and time (~1-minute) resolution. The TWINS Ly-α monitor measures the geocoronal hydrogen density to aid in ENA analysis while environmental sensors provide contemporaneous measurements of the local charged particle environments. By imaging ENAs with identical instruments from two widely spaced, high-altitude, high-inclination spacecraft, TWINS enables three-dimensional visualization of the large-scale structures and dynamics within the magnetosphere for the first time. This “instrument paper” documents the TWINS design, construction, calibration, and initial results. Finally, the appendix of this paper describes and documents the Southwest Research Institute (SwRI) instrument calibration facility; this facility was used for all TWINS instrument-level calibrations.  相似文献   
130.
We examine various model-based automatic target recognition (MBATR) classifiers to investigate the utility of model-catalog compression realized via signal-vector quantization (VQ) and feature extraction. We specifically investigate the impact of various compression rates and common automatic target recognition (ATR) scenario variations such as noise and occlusion through simulations on high-range resolution (HRR) radar and synthetic aperture radar (SAR) data. For this data, we show that significant computational savings are possible for modest decreases in classification performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号