首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3750篇
  免费   44篇
  国内免费   28篇
航空   1765篇
航天技术   1333篇
综合类   71篇
航天   653篇
  2021年   35篇
  2018年   52篇
  2017年   61篇
  2016年   34篇
  2015年   35篇
  2014年   74篇
  2013年   100篇
  2012年   86篇
  2011年   170篇
  2010年   117篇
  2009年   142篇
  2008年   210篇
  2007年   117篇
  2006年   112篇
  2005年   117篇
  2004年   83篇
  2003年   119篇
  2002年   93篇
  2001年   108篇
  2000年   91篇
  1999年   103篇
  1998年   109篇
  1997年   102篇
  1996年   88篇
  1995年   104篇
  1994年   108篇
  1993年   65篇
  1992年   77篇
  1991年   39篇
  1990年   44篇
  1989年   74篇
  1988年   39篇
  1987年   35篇
  1986年   35篇
  1985年   115篇
  1984年   79篇
  1983年   79篇
  1982年   59篇
  1981年   103篇
  1980年   26篇
  1979年   27篇
  1978年   33篇
  1977年   25篇
  1976年   23篇
  1975年   39篇
  1974年   20篇
  1972年   33篇
  1971年   25篇
  1969年   22篇
  1967年   24篇
排序方式: 共有3822条查询结果,搜索用时 15 毫秒
741.
Basaltic glasses (hyaloclastite) are a widespread habitat for life in volcanic environments, yet their interior physical conditions are poorly characterized. We investigated the characteristics of exposed weathered basaltic glass from a surface outcrop in Iceland, using microprobes capable of continuous sensing, to determine whether the physical conditions in the rock interior are hospitable to microbial life. The material provided thermal protection from freeze-thaw and rapid temperature fluctuations, similar to data reported for other rock types. Water activity experiments showed that at moisture contents less than 13% wet weight, the glass and its weathering product, palagonite, had a water activity below levels suitable for bacterial growth. In pore spaces, however, these higher moisture conditions might be maintained for many days after a precipitation event. Gas exchange between the rock interior and exterior was rapid (< 10 min) when the rocks were dry, but when saturated with water, equilibration took many hours. During this period, we demonstrated the potential for low oxygen conditions within the rock caused by respiratory stimulation of the heterotrophic community within. These conditions might exist within subglacial environments during the formation of the rocks or in micro-environments in the interior of exposed rocks. The experiments showed that microbial communities at the site studied here could potentially be active for 39% of the year, if the depth of the community within the outcrop maintains a balance between access to liquid water and adequate protection from freezing. In the absence of precipitation, the interior of weathered basaltic glass is an extreme and life-limiting environment for microorganisms on Earth and other planets.  相似文献   
742.
The chilled rinds of pillow basalt from the Ampère-Coral Patch Seamounts in the eastern North Atlantic were studied as a potential habitat of microbial life. A variety of putative biogenic structures, which include filamentous and spherical microfossil-like structures, were detected in K-phillipsite-filled amygdules within the chilled rinds. The filamentous structures (~2.5 μm in diameter) occur as K-phillipsite tubules surrounded by an Fe-oxyhydroxide (lepidocrocite) rich membranous structure, whereas the spherical structures (from 4 to 2 μm in diameter) are associated with Ti oxide (anatase) and carbonaceous matter. Several lines of evidence indicate that the microfossil-like structures in the pillow basalt are the fossilized remains of microorganisms. Possible biosignatures include the carbonaceous nature of the spherical structures, their size distributions and morphology, the presence and distribution of native fluorescence, mineralogical and chemical composition, and environmental context. When taken together, the suite of possible biosignatures supports the hypothesis that the fossil-like structures are of biological origin. The vesicular microhabitat of the rock matrix is likely to have hosted a cryptoendolithic microbial community. This study documents a variety of evidence for past microbial life in a hitherto poorly investigated and underestimated microenvironment, as represented by the amygdules in the chilled pillow basalt rinds. This kind of endolithic volcanic habitat would have been common on the early rocky planets in our Solar System, such as Earth and Mars. This study provides a framework for evaluating traces of past life in vesicular pillow basalts, regardless of whether they occur on early Earth or Mars.  相似文献   
743.
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL.  相似文献   
744.
We revisit the validity of the presence of O(2) or O(3) in the atmosphere of a rocky planet as being a biosignature. Up to now, the false positive that has been identified applies to a planet during a hot greenhouse runaway, which is restricted to planets outside the habitable zone (HZ) of the star that are closer to the star. In this paper, we explore a new possibility based on abiotic photogeneration of O(2) at the surface of a planet that could occur inside the HZ. The search for such a process is an active field of laboratory investigation that has resulted from an ongoing interest in finding efficient systems with the capacity to harvest solar energy on Earth. Although such a process is energetically viable, we find it to be a very unlikely explanation for the observation of O(2) or O(3) in the atmosphere of a telluric exoplanet in the HZ. It requires an efficient photocatalyst to be present and abundant under natural planetary conditions, which appears unlikely according to our discussion of known mineral photochemical processes. In contrast, a biological system that synthesizes its constituents from abundant raw materials and energy has the inherent adaptation advantage to become widespread and dominant (Darwinist argument). Thus, O(2) appears to continue to be a good biosignature.  相似文献   
745.
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.  相似文献   
746.
Some methods of optimizing a cutting tool kit by the minimum labour content criterion in milling of an article are considered. Their advantages and disadvantages are given.  相似文献   
747.
This study addresses the possibility of growing different halophytic plants on mineralized human urine as a way to recycle NaCl from human wastes in a bioregenerative life support system (BLSS). Two halophytic plant species were studied: the salt-accumulating Salicornia europaea and the salt-secreting Limonium gmelinii. During the first two weeks, plants were grown on Knop’s solution, then an average daily amount of urine produced by one human, which had been preliminarily mineralized, was gradually added to the experimental solutions. Nutrient solutions simulating urine mineral composition were gradually added to control solutions. NaCl concentrations in the stock solutions added to the experimental and control solutions were 9 g/L in the first treatment and 20 g/L in the second treatment. The mineralized human urine showed some inhibitory effects on S. europaea and L. gmelinii. The biomass yield of experimental plants was lower than that of control ones. If calculated for the same time period (120 d) and area (1 m2), the amount of sodium chloride taken up by S. europaea plants would be 11.7 times larger than the amount taken up by L. gmelinii plants (486 g/m2 vs. 41 g/m2). Thus, S. europaea is the better choice of halophyte for recycling sodium chloride from human wastes in BLSS.  相似文献   
748.
In heavy ion radiotherapy and space travel humans are exposed to energetic heavy ions (C, Si, Fe and others). This type of irradiation often produces more severe biological effects per unit dose than more common X-rays. A new Monte Carlo model generates a physical space with the complex geometry of human tissue or a cell culture based model of tissue, which is affected by the passage of ionizing radiation. For irradiation, the model relies on a physical code for the ion track structure; for tissues, cellular maps are derived from two- or three-dimensional confocal microscopy images using image segmentation algorithm, which defines cells as pixilated volumes. The model is used to study tissue-specific statistics of direct ion hits and the remote ion action on cells. As an application of the technique, we considered the spatial pattern of apoptotic cells after heavy ion irradiation. The pattern of apoptosis is modeled as a stochastic process, which is defined by the action cross section taken from available experimental data. To characterize the degree of apoptosis, an autocorrelation function that describes the spatial correlation of apoptotic cells is introduced. The values of the autocorrelation function demonstrate the effect of the directionality of the radiation track on the spatial arrangements of inactivated cells in tissue. This effect is intrinsic only to high linear-energy-transfer radiation.  相似文献   
749.
Several recent results important for production of ion pairs in the Earth atmosphere by various primary cosmic ray nuclei are presented. The direct ionization by various primary cosmic ray nuclei is explicitly obtained. The longitudinal profile of atmospheric cascades is sensitive to the energy and mass (charge) of the primary particle. In this study different cosmic ray nuclei are considered as primaries, namely Helium, Oxygen and Iron nuclei. The cosmic ray induced ionization is obtained on the basis of CORSIKA 6.52 code simulations using FLUKA 2006 and QGSJET II hadronic interaction models. The energy of the primary particles is normalized to GeV per nucleon. In addition, the ionization yield function Y is normalized as ion pair production per nucleon. The obtained ionization yield functions Y for various primaries are compared. The presented results and their application are discussed.  相似文献   
750.
The cosmic ray ground level enhancement on January 20, 2005 is among the largest recorded events in the history of cosmic ray measurements. The solar protons of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps following major solar disturbances. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The estimation of ionization rates is based on a numerical model for cosmic ray induced ionization. The evolution of atmospheric cascade is performed with the CORSIKA 6.52 code using FLUKA 2006b and QGSJET II hadron interaction models. The atmospheric ion rate ionization is explicitly obtained for 40°N, 60°N and 80°N latitudes. The time evolution of obtained ion rates is presented. It is demonstrated that ionization effect is negative for 40°N and small for 60°N, because of accompanying Forbush decrease. The ionization effect is significant only in sub-polar and polar atmosphere during the major ground level enhancement of 20 January 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号