首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8444篇
  免费   12篇
  国内免费   27篇
航空   4364篇
航天技术   2822篇
综合类   202篇
航天   1095篇
  2021年   54篇
  2019年   49篇
  2018年   103篇
  2016年   50篇
  2014年   135篇
  2013年   191篇
  2012年   180篇
  2011年   266篇
  2010年   175篇
  2009年   293篇
  2008年   348篇
  2007年   198篇
  2006年   190篇
  2005年   201篇
  2004年   178篇
  2003年   251篇
  2002年   250篇
  2001年   315篇
  2000年   165篇
  1999年   205篇
  1998年   255篇
  1997年   181篇
  1996年   239篇
  1995年   298篇
  1994年   270篇
  1993年   165篇
  1992年   199篇
  1991年   117篇
  1990年   107篇
  1989年   217篇
  1988年   102篇
  1987年   108篇
  1986年   101篇
  1985年   281篇
  1984年   224篇
  1983年   193篇
  1982年   203篇
  1981年   275篇
  1980年   98篇
  1979年   78篇
  1978年   89篇
  1977年   70篇
  1976年   67篇
  1975年   89篇
  1974年   70篇
  1973年   62篇
  1972年   86篇
  1971年   75篇
  1970年   63篇
  1969年   64篇
排序方式: 共有8483条查询结果,搜索用时 15 毫秒
401.
402.
Regoliths are a most important component of solar system bodies. The study of their formation and evolution depends upon measurements from orbiting spacecraft or Earth-based observations, and by the development of models addressing formation and evolution scenarios, physical properties and composition of the constituent materials. For asteroids and comets, recent measurements tend to confirm the idea of extremely low bulk densities. The porosity of the outermost regolith layers should thus reach very high values. Regolith formation and growth partly depends upon gravity and mechanical properties of its constituent particles, which are very poorly documented. Gravitational effects play an important role in the shaping processes of large bodies, while material strength properties are more important for smaller bodies. The understanding of both, aggregation processes of, and of light scattering from, such media, would strongly benefit from experiments led under microgravity, and provide insight into regolith formation processes: much lower collision and aggregation velocities can be achieved in a microgravity environment, leading to the formation of much fluffier aggregates than possible on Earth. ICAPS is a multi-year scientific programme to simulate cosmic and atmospheric particle systems on board the International Space Station. The ICAPS facility will allow to build simulated regolith and thus enable the study of their mechanical and optical properties. Measurements such as tensile strength, electrical and thermal conductivities, compressibility and porosity, will be made, as well as monitoring of collisions into such simulated regolith. The article discusses the ICAPS research plan for regolith studies and the facility current status.  相似文献   
403.
Type-III bursts are signatures of the electron beams accelerated during the solar flares, their observation and investigation provide information of the acceleration processes, the characteristics of the exciting agent and the acceleration site. The Brazilian Solar Spectroscope (BSS), in operation at INPE, Brazil, have recorded type-III radio bursts in decimetric range (2050–2250 MHz) with high time resolution of 20 ms. Decimetric reverse drift bursts are possibly generated in a dense loop by electron beams travelling towards the photosphere. Hence their time profiles should carry signatures of the density inhomogenities in the loop. Here the temporal and spectral characteristics of decimetric type-III bursts are presented.  相似文献   
404.
For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of "modular biospheres"--closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth(TM) which will simulate a life support system designed for a four person crew. The structure will consist of 6 x 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils.  相似文献   
405.
Induced abnormality in Mir- and Earth grown Super Dwarf wheat.   总被引:4,自引:0,他引:4  
Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with Earth-grown wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super-Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen gains, however, contained only one nuclei, while normal viable pollen is tri-nucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was the presence of a high level of atmospheric ethylene (1,200 ppb). Ground studies conducted by exposing 'Super-Dwarf' wheat to ethylene just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples.  相似文献   
406.
The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV micrometers-1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non-rejoined breaks is found, even after prolonged periods of incubation. At the highest LET value (16,300 keV micrometers-1) no significant repair is observed. These LET-dependencies are consistent with the current mechanistic model for radiation induced cataractogenesis which postulates that genomic damage to the surviving fraction of epithelial cells is responsible for lens opacification.  相似文献   
407.
描述并确定具有明显纹理粗糙表面均方根斜率的光散射技术(均方根斜率是联合表面轮廓高度和波长特性的混合参数)。称为散射光锥法(The scattered light-conemethod)的该技术是基于激光角散射检测阵列(DALLAS——Defector Array for Laser LishtAngular Scattering),它用于测量粗糙表面散射光角分布的仪器。均方根斜率是从DALLAS光散射图象的角宽得到的。一般可以发现角宽(即估计的均方根斜率)对光的入射角和散射角变化相当大时是不敏感的。这些结果与表面材料无关,并且对正弦和随机粗糙表面都是有效的。介绍了散射光锥法的测量原理、实验、数据分析和几点结论。  相似文献   
408.
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners.  相似文献   
409.
The advent of modernized and new global navigation satellite systems (GNSS) has enhanced the availability of satellite based positioning, navigation, and timing (PNT) solutions. Specifically, it increases redundancy and yields operational back-up or independence in case of failure or unavailability of one system. Among existing GNSS, the Chinese BeiDou system (BDS) is being developed and will consist of geostationary (GEO) satellites, inclined geosynchronous orbit (IGSO) satellites, and medium-Earth-orbit (MEO) satellites. In this contribution, a BeiDou–GPS robustness analysis is carried out for instantaneous, unaided attitude determination.  相似文献   
410.
The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA’s radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than ∼15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号