全文获取类型
收费全文 | 6350篇 |
免费 | 20篇 |
国内免费 | 15篇 |
专业分类
航空 | 3243篇 |
航天技术 | 2087篇 |
综合类 | 189篇 |
航天 | 866篇 |
出版年
2021年 | 48篇 |
2018年 | 96篇 |
2017年 | 51篇 |
2016年 | 53篇 |
2014年 | 109篇 |
2013年 | 137篇 |
2012年 | 137篇 |
2011年 | 209篇 |
2010年 | 141篇 |
2009年 | 244篇 |
2008年 | 250篇 |
2007年 | 148篇 |
2006年 | 119篇 |
2005年 | 129篇 |
2004年 | 156篇 |
2003年 | 191篇 |
2002年 | 208篇 |
2001年 | 241篇 |
2000年 | 120篇 |
1999年 | 158篇 |
1998年 | 194篇 |
1997年 | 125篇 |
1996年 | 181篇 |
1995年 | 215篇 |
1994年 | 185篇 |
1993年 | 124篇 |
1992年 | 166篇 |
1991年 | 84篇 |
1990年 | 77篇 |
1989年 | 157篇 |
1988年 | 72篇 |
1987年 | 73篇 |
1986年 | 67篇 |
1985年 | 214篇 |
1984年 | 154篇 |
1983年 | 145篇 |
1982年 | 160篇 |
1981年 | 203篇 |
1980年 | 70篇 |
1979年 | 64篇 |
1978年 | 75篇 |
1977年 | 52篇 |
1976年 | 55篇 |
1975年 | 64篇 |
1974年 | 54篇 |
1973年 | 33篇 |
1972年 | 61篇 |
1971年 | 52篇 |
1970年 | 46篇 |
1969年 | 45篇 |
排序方式: 共有6385条查询结果,搜索用时 0 毫秒
141.
142.
We report the results of a 1.4 104s observation of the region of 4U 1323-62 with the EXOSAT ME. The source has a flux of 7–8 10-11 erg/cm2s (2–10 keV) and a power-law spectrum with 1.1 < < 1.8. During our observation, the source showed a symmetric 60% dip in its X-ray flux of R~1 hr. The spectrum hardens during the dip. Inside the dip we observed an X-ray burst with a 2–10 keV peak flux of 7 10-10 erg/cm2s. The burst spectrum is black-body, and shows evidence of cooling during the burst decay. The discovery of a burst from 4U 1323-62 settles the classification of the source; the observation of a dip suggests that we may be able to measure its orbital period in the near future. 相似文献
143.
R. Von Steiger 《Space Science Reviews》1998,85(1-2):407-418
This rapporteur paper discusses the solar corona and the solar wind in the context of their chemical composition. The abundances of elements, both obtained by optical and by in situ observations, are used to infer the sources of the slow solar wind and of the fast streams. The first ionisation potential (FIP) fractionation effect is also discussed, in particular the agreed basics and the open questions. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
144.
The goal of the Kinelite Project is to develop a space qualified motion analysis system to be used in space by the scientific community, mainly to support neuroscience protocols. The measurement principle of the Kinelite is to determine, by triangulation mean, the 3D position of small, lightweight, reflective markers positioned at the different points of interest. The scene is illuminated by Infra Red flashes and the reflected light is acquired by up to 8 precalibrated and synchronized CCD cameras. The main characteristics of the system are: Camera field of view: 45 degrees; Number of cameras: 2 to 8; Acquisition frequency: 25, 50, 100, or 200 Hz; CCD format: 256 x 256; Number of markers: up to 64; 3D accuracy: 2mm; Main dimensions: 45 cm x 45 cm x 30 cm; Mass: 23 kg; Power consumption: less than 200 W. The Kinelite will first fly aboard the NASA Spacelab; it will be used, during the NEUROLAB mission (4/98), to support the \"Frames of References and Internal Models\" (Principal Investigator: Pr. A. Berthoz, Co Investigators: J. McIntyre, F. Lacquaniti). 相似文献
145.
Fluid dynamics aspects for material science experiments may be treated with respect to purely space experiments and preparatory experiments on the ground. Preparatory experiments are necessary because little experience of material science experiments in space is available. Preparatory experiments on earth are needed in the field of surface tension and viscosity, surface layers, forming and positioning of liquids. Concerning space experiments the following subjects may be treated: convection phenomena, capillarity and kinetics of liquids. Convection phenomena (Marangoni convection) can be studied without disturbance by gravitation which has a considerable technological relevance. Under space conditions the kinetics of fluids may be studied in large model structures with changing capillarity and wetting properties. 相似文献
146.
F D Sack 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):117-119
The debate about whether gravity sensing relies upon statoliths (amyloplasts that sediment) has intensified with recent findings of gravitropism in starchless mutants and of claims of hydrostatic gravity sensing. Starch and significant plastid sedimentation are not necessary for reduced sensing in mutant roots, but plastids might function here if there were a specialized receptor for plastid mass e.g. in the ER. Alternatively, components in addition to amyloplasts might provide mass for sensing. The nucleus is dense and its position is regulated, but no direct data exist for its role in sensing. If the weight of the protoplast functioned in sensing, why would there be specific cytological specializations favoring sedimentation rather than cell mass? Gravity has multiple effects on plants in addition to gravitropism. There may be more than one mechanism of gravity sensing. 相似文献
147.
K Dose A Bieger-Dose R Dillmann M Gill O Kerz A Klein H Meinert T Nawroth S Risi C Stridde 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,16(8):119-129
The general goal of the experiment was to study the response of anhydrobiotic (metabolically dormant) microorganisms (spores of Bacillus subtilis, cells of Deinococcus radiodurans, conidia of Aspergillus species) and cellular constituents (plasmid DNA, proteins, purple membranes, amino acids, urea) to the extremely dehydrating conditions of open space, in some cases in combination with irradiation by solar UV-light. Methods of investigation included viability tests, analysis of DNA damages (strand breaks, DNA-protein cross-links) and analysis of chemical effects by spectroscopic, electrophoretic and chromatographic methods. The decrease in viability of the microorganisms was as expected from simulation experiments in the laboratory. Accordingly, it could be correlated with the increase in DNA damages. The purple membranes, amino acids and urea were not measurably effected by the dehydrating condition of open space (in the dark). Plasmid DNA, however, suffered a significant amount of strand breaks under these conditions. The response of these biomolecules to high fluences of short wavelength solar UV-light is very complex. Only a brief survey can be given in this paper. The data on the relatively good survival of some of the microorganisms call for strict observance of COSPAR Planetary Protection Regulations during interplanetary space missions. 相似文献
148.
A A Gonzales A C Schuerger C Barford R Mitchell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):5-20
Microbiological contamination of crops within space-based plant growth research chambers has been postulated as a potentially significant problem. Microbial infestations; fouling of Nutrient Delivery System (NDS) fluid loops; and the formation of biofilms have been suggested as the most obvious and important manifestations of the problem. Strict sanitation and quarantine procedures will reduce, but not eliminate, microbial species introduced into plant growth systems in space habitats. Microorganisms transported into space most likely will occur as surface contaminants on spacecraft components, equipment, the crew, and plant-propagative materials. Illustrations of the potential magnitude of the microbiological contamination issue will be drawn from the literature and from documentation of laboratory and commercial field experience. Engineering strategies for limiting contamination and for the development of countermeasures will be described. Microbiological control technologies and NDS hardware will be discussed. Configurations appropriate for microgravity research facilities, as well as anticipated bio-regenerative life support system implementations, will be explored. An efficiently designed NDS, capable of adequately meeting the environmental needs of crop plants in space, is considered to be critical in both the research and operational domains. Recommended experiments, tests, and technology developments, structured to allow the development of prudent engineering solutions also will be presented. 相似文献
149.
R. C. Reynolds P. D. Anz-Meador G. W. Ojakangas 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1991,11(12):29-32
In reviewing discussions of future directions for space activity, it becomes obvious that there are a large number of groups formulating a wide diversity of plans for the future use of space. These plan alternatives are being made to account for user needs, technology development constraints, economic constraints, and launch support, and each of the plans will have direct or indirect effects on the orbital debris environment in terms of mass to orbit, deposition of operational debris, and control of accidental breakups. Thus it is important to develop the ability to project future debris states for a range of possible space traffic scenarios. The impact that these possible traffic environments would have on space operations forms the basis for studies of alternative options for the usage of space. In this paper, the effects on the orbital debris environment of a base-line mission model and two alternatives are investigated, using a numerical debris environment simulation code under development at JSC. 相似文献
150.
C S Dyer F Lei S N Clucas D F Smart M A Shea 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(1):81-93
Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations to spectral fitting, geomagnetic activity and other assumptions demonstrates the requirement for widespread carriage of radiation monitors on aircraft. 相似文献