首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4814篇
  免费   3篇
  国内免费   12篇
航空   2517篇
航天技术   1551篇
综合类   181篇
航天   580篇
  2021年   30篇
  2018年   69篇
  2017年   36篇
  2016年   40篇
  2014年   72篇
  2013年   99篇
  2012年   106篇
  2011年   158篇
  2010年   101篇
  2009年   182篇
  2008年   192篇
  2007年   114篇
  2006年   87篇
  2005年   84篇
  2004年   114篇
  2003年   139篇
  2002年   179篇
  2001年   198篇
  2000年   93篇
  1999年   123篇
  1998年   153篇
  1997年   99篇
  1996年   138篇
  1995年   168篇
  1994年   146篇
  1993年   95篇
  1992年   122篇
  1991年   57篇
  1990年   63篇
  1989年   125篇
  1988年   58篇
  1987年   60篇
  1986年   51篇
  1985年   152篇
  1984年   120篇
  1983年   108篇
  1982年   117篇
  1981年   153篇
  1980年   56篇
  1979年   46篇
  1978年   57篇
  1977年   37篇
  1976年   40篇
  1975年   48篇
  1974年   39篇
  1973年   25篇
  1972年   49篇
  1971年   47篇
  1970年   30篇
  1969年   33篇
排序方式: 共有4829条查询结果,搜索用时 31 毫秒
141.
Three-dimensional (3-D) electron density matrices, computed in the Mediterranean area by the IRI climatological model and IRIEup and ISP nowcasting models, during some intense and severe geomagnetic-ionospheric storms, were ingested by the ray tracing software tool IONORT, to synthesize quasi-vertical ionograms. IRIEup model was run in different operational modes: (1) assimilating validated autoscaled electron density profiles only from a limited area which, in our case, is the Mediterranean sector (IRIEup_re(V) mode); (2) assimilating electron density profiles from a larger region including several stations spread across Europe: (a) without taking care of validating the autoscaled data in the assimilation process (IRIEup(NV)); (b) validating carefully the autoscaled electron density profiles before their assimilation (IRIEup(V)).The comparative analysis was carried out comparing IRI, IRIEup_re(V), ISP, IRIEup(NV), and IRIEup(V) foF2 synthesized values, with corresponding foF2 measurements autoscaled by ARTIST, and then validated, at the truth sites of Roquetes (40.80°N, 0.50°E, Spain), San Vito (40.60°N, 17.80°E, Italy), Athens (38.00°N, 23.50°E, Greece), and Nicosia, (35.03°N, 33.16°E, Cyprus). The outcomes demonstrate that: (1) IRIEup_re(V), performs better than ISP in the western Mediterranean (around Roquetes); (2) ISP performs slightly better than IRIEup_re(V) in the central part of Mediterranean (around Athens and San Vito); (3) ISP performance is better than the IRIEup_re(V) one in the eastern Mediterranean (around Nicosia); (4) IRIEup(NV) performance is worse than the IRIEup(V) one; (5) in the central Mediterranean area, IRIEup(V) performance is better than the IRIEup_re(V) one, and it is practically the same for the western and eastern sectors.Concerning the overall performance, nowcasting models proved to be considerably more reliable than the climatological IRI model to represent the ionosphere behaviour during geomagnetic-ionospheric storm conditions; ISP and IRIEup(V) provided the best performance, but neither of them has clearly prevailed over the other one.  相似文献   
142.
This study aims at assessing the safety behavior of the Incheon long-span bridge using high rate (10?Hz) geodetic monitoring global positioning system (GPS). The time series of wavelet spectrum analysis is utilized to assess the dynamic behavior of the bridge. The coefficients and model errors of the time series autoregressive-moving average (ARMA) model are used to evaluate the movement performances of the bridge. The results show that: (i) the accuracy of GPS measurements to extract the dynamic behavior of the bridge is 97.27% when compared with the design results. (ii) the behavior of the bridge is within the safety limits of the bridge design with minimum observed changes for the historical GPS measurements in time and frequency domains, the mean deflection of bridge deck is 8.26?mm and frequency changes of bridge is 0.004?Hz compared with the design results. (iii) the time series analysis of the wavelet spectrum and ARMA model coefficients can be used to detect the significant frequency changes and study the rigidity of the bridge performance, respectively; and the both methods are found to be suitable techniques to estimate the performance changes of the GPS measurements in the time and frequency domains during the monitoring time period.  相似文献   
143.
This paper considers a beam with a technological longitudinal section on the level of the gravity center of the cross section that is loaded by a vertical concentrated force. We study the structure durability depending on the load amplitude and the initial crack length.  相似文献   
144.
145.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
146.
The use of gray-scale intensities together with the edge information present in a forward-looking infrared (FLIR) image to obtain a precise and accurate segmentation of a target is presented. A model of FLIR images based on gray-scale and edge information is incorporated in a gradient relaxation technique which explicitly maximizes a criterion function based on the inconsistency and ambiguity of classification of pixels with respect to their neighbors. Four variations of the basic technique which provide automatic selection of thresholds to segment FLIR images are considered. These methods are compared, and several examples of segmentation of ship images are given  相似文献   
147.
The commenters point out that the idea using a two-dimensional digital correlation technique to perform synthetic-aperture-radar (SAR) processing, presented as new in the above-titled paper (see ibid., vol.24, p.218-23, May 1988), was described by them as early as 1978 and has since been described by other authors. They discuss some of these earlier studies. The author replies that he was unaware of the earlier work, and that he did not intend to convey the impression that the nonseparable transform domain processor that he presented was the first  相似文献   
148.
This paper proposes a novel landing gear for spacecraft that allows a weight reduction due to using deformable crash legs. Numerical simulation of the landing process was performed.  相似文献   
149.
A method for representing thermodynamic and thermophysical functions is presented; the functions make it possible to simulate thermal and gasodynamic processes in powerplants that use different individual substances or their mixtures as a working fluid. The method also involves consideration of real gas properties.  相似文献   
150.
Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging   总被引:3,自引:0,他引:3  
Mende  S.B.  Heetderks  H.  Frey  H.U.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Tremsin  A.S.  Spann  J.  Dougani  H.  Fuselier  S.A.  Magoncelli  A.L.  Bumala  M.B.  Murphree  S.  Trondsen  T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号