首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4813篇
  免费   3篇
  国内免费   12篇
航空   2517篇
航天技术   1550篇
综合类   181篇
航天   580篇
  2021年   30篇
  2018年   69篇
  2017年   36篇
  2016年   40篇
  2014年   72篇
  2013年   99篇
  2012年   106篇
  2011年   158篇
  2010年   101篇
  2009年   182篇
  2008年   191篇
  2007年   114篇
  2006年   87篇
  2005年   84篇
  2004年   114篇
  2003年   139篇
  2002年   179篇
  2001年   198篇
  2000年   93篇
  1999年   123篇
  1998年   153篇
  1997年   99篇
  1996年   138篇
  1995年   168篇
  1994年   146篇
  1993年   95篇
  1992年   122篇
  1991年   57篇
  1990年   63篇
  1989年   125篇
  1988年   58篇
  1987年   60篇
  1986年   51篇
  1985年   152篇
  1984年   120篇
  1983年   108篇
  1982年   117篇
  1981年   153篇
  1980年   56篇
  1979年   46篇
  1978年   57篇
  1977年   37篇
  1976年   40篇
  1975年   48篇
  1974年   39篇
  1973年   25篇
  1972年   49篇
  1971年   47篇
  1970年   30篇
  1969年   33篇
排序方式: 共有4828条查询结果,搜索用时 0 毫秒
71.
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components.  相似文献   
72.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   
73.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
74.
A problem is posed and solved on determining the optimal parameters of a moving wall installed on the airfoil surface to prevent the boundary layer separation. As the wall parameters, its initial and final position and motion velocity are taken. To solve the problem, the optimization methods with penalty functions are used. The conclusions were drawn on selecting the efficient parameters of the moving wall in terms of the minimum of energy expenditure and friction drag.  相似文献   
75.
A Loran-C Receiver is used as an example to show how an analog system could be converted to a digital one to take advantage of the expanding integrated circuit technology. The digital equivalents of the analog servo elements are described. Criteria for the design of a phase-tracking servomechanism is developed in detail. The Loran performance requirements are used to illustrate their application. The noise performance of a critically damped Type II servomechanism is derived in detail. Since the system will be employed in aircraft, tracking velocity becomes an important consideration. An analysis is made showing that an adaptive control is desirable.  相似文献   
76.
The performance of a digital implementation of an Applebaum-Howells type adaptive processor is analyzed for both a limiter and nonlimiter configuration. The performance is evaluated in terms of steady-state residue power, using either a single-pole filter or a perfect integrator to smooth the output of the correlation mixer. The latter filter is the more commonly used for digital implementations. It is shown that when using the perfect integrator filter for both the limiter and linear digital implementations, the steady-state average weight vector equals the optimum weight vector. Thus, for this filter, the steady-state residue power is the minimum possible for either implementation. When using the single-pole filter, neither implementation achieves the minimum possible steady-state residue power. The relative performance of the two implementations depends upon the relative gain settings. When the gains are adjusted to give comparable servo stability for the design maximum jammer power, a reasonable criterion for digital implementations because of analog to digital saturation, the limiter configuration always has smaller steady-state residue power.  相似文献   
77.
Summary The observational features of the arc are fairly well established. At present, the thermal conduction model appears to explain the red arc features most consistently, but it must be noted that a soft electron flux would give very similar results. Ion temperature measurements in the vicinity of an arc, which should be forthcoming in the very near future, can establish conclusively whether transverse electric fields play any important role in the formation of the arcs. Accepting the assumption that the arcs are the result of energy flowing down from the plasmasphere, the major remaining question is: where does the energy come from and how does it get into the plasmasphere? The various proposed mechanisms discussed in the previous chapter appear feasible, but much work needs to be done before this problem is completely resolved.On leave from the Department of Electrical Engineering, The University of Michigan, Ann Arbor.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
78.
Based on the relationship between the inputand output correlation functions for a symmetric2N step optimum quantizer withGaussian noise inputs a computer programwas generated to obtain plots of the inputnumber of levels versus dynamic range of thequantizer. For it to be physically useful thedynamic range should be related to the distortionin the fundamental band and thedesired harmonic suppression. A definitionbased upon these considerations is suggestedand curves are plotted for two different fundamentaldistortion levels and three differentlevels of harmonic suppression. It is foundthat, for low levels of harmonic suppression(0-20 dB range), the dynamic range can beincreased by tolerating a higher level of fundamentaldistortion. In the medium range ofharmonic suppression (20-35 dB), any increasein the dynamic range due to higherfundamental distortion levels disappearsfor high level quantizers (typically 4 bitsor more). For still higher harmonic suppression(40 dB or higher), the dynamic range ofthe quantizer is independent of the acceptablefundamental distortion.  相似文献   
79.
This paper describes a method of applying digital techniques to the control of a 1-kVA three-phase dc-ac inverter to generate a sinusoidal 400-Hz output, using high-frequency bridge-chopper techniques. The model which was constructed used predominantly off-theshelf digital microcircuits and resulted in a device with an overall efficiency of 85 percent, in a 0.52 cubic-foot package which weighed 19.5 lbs. Sinusoidal output with less than 2 percent harmonic distortion at 115 volts line to neutral was obtained with 28 volts dc input.  相似文献   
80.
A general performance index is developed for evaluating aircraft landing trajectories. The primary term in the index is the effect of noise on people residing near the air terminal. Other terms included are passenger comfort, fuel consumed, and the time spent in the near-terminal area. Models are developed for aircraft engine noise, passenger comfort, the population distribution about a specific airport, and the aircraft flight behavior. While this performance index may be used in computing optimal trajectories, it is also useful for comparing nonoptimal trajectories which, for one reason or another, may be worthy of consideration. Some examples of such comparisons are included through simulations of landing. The aircraft considered is a Boeing 737.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号