首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7425篇
  免费   46篇
  国内免费   38篇
航空   3687篇
航天技术   2490篇
综合类   250篇
航天   1082篇
  2021年   57篇
  2018年   98篇
  2017年   88篇
  2016年   64篇
  2015年   42篇
  2014年   131篇
  2013年   170篇
  2012年   169篇
  2011年   281篇
  2010年   190篇
  2009年   290篇
  2008年   339篇
  2007年   200篇
  2006年   180篇
  2005年   179篇
  2004年   162篇
  2003年   215篇
  2002年   249篇
  2001年   283篇
  2000年   157篇
  1999年   185篇
  1998年   215篇
  1997年   171篇
  1996年   184篇
  1995年   233篇
  1994年   224篇
  1993年   136篇
  1992年   173篇
  1991年   83篇
  1990年   97篇
  1989年   171篇
  1988年   80篇
  1987年   81篇
  1986年   75篇
  1985年   229篇
  1984年   168篇
  1983年   158篇
  1982年   161篇
  1981年   216篇
  1980年   73篇
  1979年   66篇
  1978年   79篇
  1977年   52篇
  1976年   60篇
  1975年   76篇
  1974年   57篇
  1972年   72篇
  1971年   61篇
  1970年   46篇
  1969年   47篇
排序方式: 共有7509条查询结果,搜索用时 309 毫秒
601.
We review observations from Voyager 2 of CIRs and merged CIRs in the outer heliosphere. The rather simple characteristics of the CIR-associated changes in plasma, magnetic field, and particles become more complex as observations are made at greater and greater distances. Pickup ions from charge exchange undoubtedly play an important role in the structure, but the full details are not yet understood. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
602.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
603.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
604.
Polar format algorithm for bistatic SAR   总被引:4,自引:0,他引:4  
Matched filtering (MF) of phase history data is a mathematically ideal but computationally expensive approach to bistatic synthetic aperture radar (SAR) image formation. Fast backprojection algorithms (BPAs) for image formation have recently been shown to give improved O(N/sup 2/ log/sub 2/N) performance. An O(N/sup 2/ log/sub 2/N) bistatic polar format algorithm (PFA) based on a bistatic far-field assumption is derived. This algorithm is a generalization of the popular PFA for monostatic SAR image formation and is highly amenable to implementation with existing monostatic image formation processors. Limits on the size of an imaged scene, analogous to those in monostatic systems, are derived for the bistatic PFA.  相似文献   
605.
Ultraviolet emission line profiles have been measured on 15-29 September 1997 for H I 1216 Å, O VI 1032, 1037 Å and Mg X 625 Å in a polar coronal hole, at heliographic heights ? (in solar radii) between 1.34 and 2.0. Observations of H I 1216 Å and the O VI doublet from January 1997 for ? = 1.5 to 3.0 are provided for comparison. Mg X 625 Å is observed to have a narrow component at ? = 1.34 which accounts for only a small fraction of the observed spectral radiance, and a broad component that exists at all observed heights. The widths of O VI broad components are only slightly larger than those for H I at ? = 1.34, but are significantly larger at ? = 1.5 and much larger for ? > 1.75. In contrast, the Mg X values are less than those of H I up to 1.75 and then increase rapidly up to at least ? = 2.0, but never reach the values of O VI.  相似文献   
606.
In this paper we present a family of track-before-detect (TBD) procedures for early detection of moving targets from airborne radars. Upon a sectorization of the coverage area, the received echoes are jointly processed in the azimuth-range-Doppler domain and in the time domain through a Viterbi-like algorithm that exploits the physically admissible target transitions between successive illuminations, in order to collect all of the energy back-scattered during the time on target (TOT). A reduced-complexity implementation is derived assuming, at the design stage, that the target does not change resolution cell during the TOT in each scan. The constant false alarm rate (CFAR) constraint is also englobed in the proposed procedures as well as the possibility of working with quantized data. Simulation results show that the proposed algorithms have good detection and tracking capabilities even for high target velocities and low quantization rates.  相似文献   
607.
高深径比TC4钛合金筒形件普旋成型有限元数值模拟   总被引:2,自引:2,他引:2       下载免费PDF全文
采用有限元法对特定高深径比TC4钛合金筒形件普旋成型进行了数值模拟,分析了运动轨迹、旋压道次间距和间隙对成型的影响.结果表明普旋时坯料不同部位的应力应变状态不同,采用凹曲线轨迹,间隙为3.5 mm,首道次间距为9 mm,分6道次旋压成型效果好.同时在有限元数值模拟基础上,成功旋制了高精度试验件,说明有限元模拟对旋压具有很好指导意义.  相似文献   
608.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   
609.
激波风洞重模型气动力试验研究   总被引:2,自引:0,他引:2  
在激波风洞上进行气动力试验时,风洞启动时巨大的冲击载荷使模型-天平受到充分的激励,从而形成惯性干扰力,并与真实气动力混杂在一起,甚至完全覆盖气动力,降低了试验精准度,使得试验模型的质量受到极大的限制。本文介绍了CARDC-dia.2米激波风洞进行大、重模型的压电天平气动力试验研究情况,包括天平设计、天平校准、惯性补偿和风洞试验等几个方面。研究结果表明:气动力试验模型质量可从过去的500g增加到8kg,模型长度可达1m。从而提高了激波风洞测力试验能力,能满足高超声速飞行器试验的需求。  相似文献   
610.
As part of the Cluster Wave Experiment Consortium (WEC), the Wide-Band (WBD) Plasma Wave investigation is designed to provide high-resolution measurements of both electric and magnetic fields in selected frequency bands from 25 Hz to 577 kHz. Continuous waveforms are digitised and transmitted in either a 220 kbit s-1 real-time mode or a 73 kbit s-1 recorded mode. The real-time data are received directly by a NASA Deep-Space Network (DSN) receiving station, and the recorded data are stored in the spacecraft solid-state recorder for later playback. In both cases the waveforms are Fourier transformed on the ground to provide high-resolution frequency-time spectrograms. The WBD measurements complement those of the other WEC instruments and also provide a unique new capability for performing very-long-baseline interferometry (VLBI) measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号