首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6349篇
  免费   11篇
  国内免费   18篇
航空   3240篇
航天技术   2083篇
综合类   189篇
航天   866篇
  2021年   47篇
  2018年   95篇
  2017年   51篇
  2016年   52篇
  2014年   109篇
  2013年   137篇
  2012年   138篇
  2011年   209篇
  2010年   142篇
  2009年   244篇
  2008年   250篇
  2007年   148篇
  2006年   118篇
  2005年   130篇
  2004年   155篇
  2003年   191篇
  2002年   208篇
  2001年   241篇
  2000年   120篇
  1999年   158篇
  1998年   194篇
  1997年   125篇
  1996年   181篇
  1995年   215篇
  1994年   185篇
  1993年   124篇
  1992年   166篇
  1991年   84篇
  1990年   77篇
  1989年   157篇
  1988年   72篇
  1987年   73篇
  1986年   67篇
  1985年   212篇
  1984年   154篇
  1983年   145篇
  1982年   160篇
  1981年   203篇
  1980年   70篇
  1979年   64篇
  1978年   75篇
  1977年   52篇
  1976年   55篇
  1975年   64篇
  1974年   54篇
  1973年   33篇
  1972年   61篇
  1971年   52篇
  1970年   46篇
  1969年   45篇
排序方式: 共有6378条查询结果,搜索用时 750 毫秒
261.
金属载体上线天线阻抗与辐射特性的矩量法研究   总被引:2,自引:0,他引:2  
用线网格模拟金属载体表面,应用矩量法求出天线及载体网格上的电流分布,据此研究在该金属载体影响下的天线特性,在计算阻抗矩阵元素时,利用了非对称正弦偶极子辐射场的精确表达式,并采用了直接复数积分,简化了计算公式,本文给出了几种金属载体上线天线的阻抗与辐射特性的计算结果,它们与有关文献上的数据或实验结果一致,最后计算了一种舰船简单模型上两根线天线的远区辐射场及它们的自阻抗与互阻抗。  相似文献   
262.
基于BP网络的热工过程模型辨识方法   总被引:3,自引:0,他引:3  
主要研究了人工神经网络在辨识火电厂热工过程模型中的应用,利用Visual C^ 语言构造BP神经网络,提出了把BP网络权值转换为传递函数的方法,针对火电厂常见的热工过程,不用人为加入特殊的激励信号,只利用现场生产中自然存在的扰动信号进行辨识试验,试验结果准确可靠。  相似文献   
263.
The space radiation environment is a mixed field consisting of different particles having different energies, including high charge and energy (HZE) ions. Conventional measurements of absorbed doses may not be sufficient to completely characterise the radiation field and perform reliable estimates of health risks. Biological dosimetry, based on the observation of specific radiation-induced endpoints (typically chromosome aberrations), can be a helpful approach in case of monitored exposure to space radiation or other mixed fields, as well as in case of accidental exposure. Furthermore, various ratios of aberrations (e.g. dicentric chromosomes to centric rings and complex exchanges to simple exchanges) have been suggested as possible fingerprints of radiation quality, although all of them have been subjected to some criticisms. In this context a mechanistic model and a Monte Carlo code for the simulation of chromosome aberration induction were developed. The model, able to provide dose-responses for different aberrations (e.g. dicentrics, rings, fragments, translocations, insertions and other complex exchanges), was further developed to assess the dependence of various ratios of aberrations on radiation quality. The predictions of the model were compared with available data, whose experimental conditions were faithfully reproduced. Particular attention was devoted to the scoring criteria adopted in different laboratories and to possible biases introduced by interphase death and mitotic delay. This latter aspect was investigated by taking into account both metaphase data and data obtained with Premature Chromosome Condensation (PCC).  相似文献   
264.
Future space missions aiming at the accurate measurement of cold plasmas and DC to very low frequency electric fields will require that the potential of their conductive surfaces be actively controlled to be near the ambient plasma potential. In the near-Earth space these spacecraft are usually solar-cell powered; consequently, parts of their surface are most of the time exposed to solar photons. Outside the plasmasphere, a positive surface potential due the dominance of surface-emitted photoelectrons over ambient plasma electrons is to be expected. Photo- and ambient electrons largely determine the potential and positive values between a few Volts up to 100 V have been observed. Active ion emission is the obvious solution of this problem. A liquid metal ion emitter and a saddle field ion emitter are nearing the stage of flight unit fabrication. We will attempt to clamp the spacecraft potential to values close to the plasma potential. We present first results from vacuum chamber tests and describe the emission behaviour and characteristics of emitters producing, respectively, In+ and N2+ beams with an energy of ≥ 5 keV.  相似文献   
265.
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux.  相似文献   
266.
Water is the essential precondition of life in general and also for the establishment of a Martian base suitable for long duration stays of humans. It is not yet proven if there is indeed a "frozen ocean" under the surface of Mars but if this could be verified it would open innovative aspects for the construction of bioregenerative life support systems (BLSS). In a general concept higher plants will play the predominant role in a Martian BLSS. It is not clear, however, how these will grow and bring seed in reduced gravity and there may be differences in the productivity in comparison to Earth conditions. Therefore, organisms which are already adapted to low gravity conditions, namely non-gravitropic aquatic plants and also aquatic animals may be used to enhance the functionality of the Martian BLSS as a whole. It has been shown already with the so-called C.E.B.A.S. MINIMODULE in the STS-89 and STS-90 spaceshuttle missions that the water plant Ceratophyllum demersum has an undisturbed and high biomass production under space conditions. Moreover, the teleost fish species Xiphophorus helleri adapted easily to the micro-g environment and maintained its normal reproductive functions. Based on this findings a possible scenario is presented in which aquatic plant production modules and combined animal-plant production systems may be used for human food production and water and air regeneration in a Martian base.  相似文献   
267.
After initial emphasis on large-scale baseline crop tests, the Kennedy Space Center (KSC) Breadboard project has begun to evaluate long-term operation of the biomass production system with increasing material closure. Our goal is to define the minimum biological processing necessary to make waste streams compatible with plant growth in hydroponic systems, thereby recycling nutrients into plant biomass and recovering water via atmospheric condensate. Initial small and intermediate-scale studies focused on the recycling of nutrients contained in inedible plant biomass. Studies conducted between 1989-1992 indicated that the majority of nutrients could be rapidly solubilized in water, but the direct use of this crop "leachate" was deleterious to plant growth due to the presence of soluble organic compounds. Subsequent studies at both the intermediate scale and in the large-scale Biomass Production Chamber (BPC) have indicated that aerobic microbiological processing of crop residue prior to incorporation into recirculating hydroponic solutions eliminated any phytotoxic effect, even when the majority of the plant nutrient demand was provided from recycled biomass during long term studies (i.e. up to 418 days). Current and future studies are focused on optimizing biological processing of both plant and human waste streams.  相似文献   
268.
269.
270.
Changes of deoxyribonucleoprotein in the spleen, thymus and liver of rats exposed to wegithlessness or artifical gravity on board biosatellites Cosmos 782 and Cosmos 936 after 20 days of flight were investigated. The level of polydeoxyribonucleotides in the spleen and thymus of rats exposed during the flight to weightlessness increased 4 – 11 hours after landing, suggesting breakdown of a part of the deoxyribonucleoprotein present. The use of artifical gravity prevented this breakdown in the thymus but not in the spleen. The breakdown was accompanied in the majority of cases by a decrease in teh deoxyribonucleoprotein content. We believe the breakdown of deoxyribonucleoprotein is due to a nonspecific stress reaction to the change from the weightless state to that of terrestrial gravity during landing. The polydeoxyribonucleotide level and amount of deoxyribonucleoprotein in the majority of cases returned to normal values during the 25 days of readaptation. No substantial change of deoxyribonucleoprotein was found in the liver. The different findings in the three organs are due to the fact that breakdown of deoxyribonucleoprotein takes place in sensitive cells underlying pycnosis. These cells are found in the spleen and thymus, but not in the liver.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号