全文获取类型
收费全文 | 3158篇 |
免费 | 8篇 |
国内免费 | 12篇 |
专业分类
航空 | 1669篇 |
航天技术 | 1080篇 |
综合类 | 9篇 |
航天 | 420篇 |
出版年
2018年 | 37篇 |
2017年 | 19篇 |
2016年 | 22篇 |
2014年 | 56篇 |
2013年 | 78篇 |
2012年 | 59篇 |
2011年 | 105篇 |
2010年 | 82篇 |
2009年 | 112篇 |
2008年 | 175篇 |
2007年 | 90篇 |
2006年 | 62篇 |
2005年 | 77篇 |
2004年 | 78篇 |
2003年 | 100篇 |
2002年 | 52篇 |
2001年 | 99篇 |
2000年 | 48篇 |
1999年 | 82篇 |
1998年 | 93篇 |
1997年 | 73篇 |
1996年 | 91篇 |
1995年 | 124篇 |
1994年 | 98篇 |
1993年 | 67篇 |
1992年 | 101篇 |
1991年 | 43篇 |
1990年 | 36篇 |
1989年 | 87篇 |
1988年 | 33篇 |
1987年 | 28篇 |
1986年 | 33篇 |
1985年 | 87篇 |
1984年 | 91篇 |
1983年 | 59篇 |
1982年 | 82篇 |
1981年 | 92篇 |
1980年 | 34篇 |
1979年 | 42篇 |
1978年 | 32篇 |
1977年 | 22篇 |
1976年 | 21篇 |
1975年 | 37篇 |
1974年 | 24篇 |
1973年 | 18篇 |
1972年 | 29篇 |
1969年 | 17篇 |
1968年 | 16篇 |
1967年 | 20篇 |
1966年 | 16篇 |
排序方式: 共有3178条查询结果,搜索用时 15 毫秒
831.
Deuterium fractionations in cometary ices provide important clues to the origin and evolution of comets. Mass spectrometers
aboard spaceprobe Giotto revealed the first accurate D/H ratios in the water of Comet 1P/Halley. Ground-based observations
of HDO in Comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp), the detection of DCN in Comet Hale-Bopp, and upper limits
for several other D-bearing molecules complement our limited sample of D/H measurements. On the basis of this data set all
Oort cloud comets seem to exhibit a similar
ratio in H2O, enriched by about a factor of two relative to terrestrial water and approximately one order of magnitude relative to the
protosolar value. Oort cloud comets, and by inference also classical short-period comets derived from the Kuiper Belt cannot
be the only source for the Earth's oceans. The cometary O/C ratio and dynamical reasons make it difficult to defend an early
influx of icy planetesimals from the Jupiter zone to the early Earth. D/H measurements of OH groups in phyllosilicate rich
meteorites suggest a mixture of cometary water and water adsorbed from the nebula by the rocky grains that formed the bulk
of the Earth may be responsible for the terrestrial D/H. The D/H ratio in cometary HCN is 7 times higher than the value in
cometary H2O. Species-dependent D-fractionations occur at low temperatures and low gas densities via ion-molecule or grain-surface reactions and cannot be explained by a pure solar nebula chemistry. It is plausible that cometary
volatiles preserved the interstellar D fractionation. The observed D abundances set a lower limit to the formation temperature
of (30 ± 10) K. Similar numbers can be derived from the ortho-to-para ratio in cometary water, from the absence of neon in
cometary ices and the presence of S2. Noble gases on Earth and Mars, and the relative abundance of cometary hydrocarbons place the comet formation temperature
near 50 K. So far all cometary D/H measurements refer to bulk compositions, and it is conceivable that significant departures
from the mean value could occur at the grain-size level. Strong isotope effects as a result of coma chemistry can be excluded
for molecules H2O and HCN. A comparison of the cometary
ratio with values found in the atmospheres of the outer planets is consistent with the long-held idea that the gas planets
formed around icy cores with a high cometary D/H ratio and subsequently accumulated significant amounts of H2 from the solar nebula with a low protosolar D/H.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
832.
We have developed a 2D semi-empirical model (Sittler and Guhathakurta 1999) of the corona and the interplanetary medium using
the time independent MHD equations and assuming azimuthal symmetry, utilizing the SOHO, Spartan and Ulysses observations.
The model uses as inputs (1) an empirically derived global electron density distribution using LASCO, Mark III and Spartan
white light observations and in situ observations of the Ulysses spacecraft, and (2) an empirical model of the coronal magnetic
field topology using SOHO/LASCO and EIT observations. The model requires an estimate of solar wind velocity as a function
of latitude at 1 AU and the radial component of the magnetic field at 1 AU, for which we use Ulysses plasma and magnetic field
data results respectively. The model makes estimates as a function of radial distance and latitude of various fluid parameters
of the plasma such as flow velocity V, temperature Teff, and heat flux Qeff which are derived from the equations of conservation of mass, momentum and energy, respectively, in the rotating frame of
the Sun. The term "effective" indicates possible wave contributions. The model can be used as a planning tool for such missions
as Solar Probe and provide an empirical framework for theoretical models of the solar corona and solar wind.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
833.
E. C. Stone R. E. Vogt F. B. McDonald B. J. Teegarden J. H. Trainor J. R. Jokipii W. R. Webber 《Space Science Reviews》1977,21(3):355-376
A cosmic-ray detector system (CRS) has been developed for the Voyager mission which will measure the energy spectrum of electrons from 3–110 MeV and the energy spectra and elemental composition of all cosmic-ray nuclei from hydrogen through iron over an energy range from 1–500 MeV/nuc. Isotopes of hydrogen through sulfur will be resolved from 2–75 MeV/nuc. Studies with CRS data will provide information on the energy content, origin and acceleration process, life history, and dynamics of cosmic rays in the galaxy, and contribute to an understanding of the nucleosynthesis of elements in the cosmic-ray sources. Particular emphasis will be placed on low-energy phenomena that are expected to exist in interstellar space and are known to be present in the outer Solar System. This investigation will also add to our understanding of the transport of cosmic rays, Jovian electrons, and low-energy interplanetary particles over an extended region of interplanetary space. A major contribution to these areas of study will be the measurement of three-dimensional streaming patterns of nuclei from H through Fe and electrons over an extended energy range, with a precision that will allow determination of anisotropies down to 1%. The required combination of charge resolution, reliability and redundance has been achieved with systems consisting entirely of solid-state charged-particle detectors.Principal Investigator of the Voyager Cosmic Ray Experiment. 相似文献
834.
835.
The Search Coil Magnetometer for THEMIS 总被引:2,自引:0,他引:2
A. Roux O. Le Contel C. Coillot A. Bouabdellah B. de la Porte D. Alison S. Ruocco M. C. Vassal 《Space Science Reviews》2008,141(1-4):265-275
THEMIS instruments incorporate a tri-axial Search Coil Magnetometer (SCM) designed to measure the magnetic components of waves associated with substorm breakup and expansion. The three search coil antennas cover the same frequency bandwidth, from 0.1 Hz to 4 kHz, in the ULF/ELF frequency range. They extend, with appropriate Noise Equivalent Magnetic Induction (NEMI) and sufficient overlap, the measurements of the fluxgate magnetometers. The NEMI of the searchcoil antennas and associated pre-amplifiers is smaller than 0.76 pT $/\sqrt{\mathrm{Hz}}$ at 10 Hz. The analog signals produced by the searchcoils and associated preamplifiers are digitized and processed inside the Digital Field Box (DFB) and the Instrument Data Processing Unit (IDPU), together with data from the Electric Field Instrument (EFI). Searchcoil telemetry includes waveform transmission, FFT processed data, and data from a filter bank. The frequency range covered depends on the available telemetry. The searchcoils and their three axis structures have been precisely calibrated in a calibration facility, and the calibration of the transfer function is checked on board, usually once per orbit. The tri-axial searchcoils implemented on the five THEMIS spacecraft are working nominally. 相似文献
836.
C.M. Denardini H.C. Aveiro J.H.A. Sobral J.V. Bageston L.M. Guizelli L.C.A. Resende J. Moro 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Zonal and vertical electric fields were estimated at E region heights in the Brazilian sector. Zonal electric fields are obtained from the vertical electric fields based on their relation through the Hall-to-Pedersen ionospheric conductivities ratio. The technique for obtaining the vertical electric field is based on its proportionality to the Doppler velocities of type 2 irregularities as detected by coherent radars. The 50 MHz backscatter coherent (RESCO) radar was used to estimate the Doppler velocities of the type 2 irregularities embedded in the equatorial electrojet. A magnetic field-line integrated conductivity model was developed to provide the conductivities. It considers a multi-species ionosphere and a multi-species neutral atmosphere, and uses the IRI 2007, the MISIS 2000 and the IGRF 10 models as input parameters for ionosphere, neutral atmosphere and Earth’s magnetic field, respectively. The ion-neutral collision frequencies of all the species are combined through the momentum transfer collision frequency equation, and different percentages of electron-neutral collisions were artificially included for studying the implication of such increase in the zonal electric field, which resulted ranging from 0.13 to 0.49 mV/m between the 8 and 18 h (LT), under quiet magnetic conditions. 相似文献
837.
C. Lázaro M.F. Juliano M.J. Fernandes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Satellite altimetry has been widely used to study the variability of the ocean currents such as the Azores Current (AzC) in the North Atlantic. Most analyses are performed over the region that encloses the current, thus being somehow affected by other oceanographic signals, e.g., eddies. In this study, a new approach for extracting the axis of a zonal current solely based on satellite altimetry is presented. This is a semi-automatic procedure that searches for the maximum values of the gradient of absolute dynamic topography (ADT), using the geostrophic velocity as auxiliary information. The advantage of this approach is to allow the analyses to be performed over a buffer centered on the current axis instead of using a wider region. It is here applied to the AzC for the period June 1995–October 2006. 相似文献
838.
D. Sanz A. Barrientos M. Garzón C. Rossi M. Mura D. Puccinelli A. Puiatti M. Graziano A. Medina L. Mollinedo C. de Negueruela 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Planetary surface exploration is an appealing application of wireless sensor networks that has been investigated in recent years by the space community, including the European Space Agency. The idea is to deploy a number of self-organizing sensor nodes forming a wireless networked architecture to provide a distributed instrument for the study and exploration of a planetary body. To explore this concept, ESA has funded the research project RF Wireless for Planetary Exploration (RF-WIPE), carried out by GMV, SUPSI and UPM. The purpose of RF-WIPE was to simulate and prototype a wireless sensor network in order to assess the potential and limitations of the technology for the purposes of planetary exploration. 相似文献
839.
840.