首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5260篇
  免费   24篇
  国内免费   7篇
航空   2515篇
航天技术   1889篇
综合类   194篇
航天   693篇
  2019年   32篇
  2018年   80篇
  2017年   48篇
  2016年   46篇
  2014年   95篇
  2013年   122篇
  2012年   99篇
  2011年   170篇
  2010年   107篇
  2009年   181篇
  2008年   255篇
  2007年   118篇
  2006年   109篇
  2005年   125篇
  2004年   144篇
  2003年   152篇
  2002年   192篇
  2001年   207篇
  2000年   91篇
  1999年   107篇
  1998年   158篇
  1997年   116篇
  1996年   156篇
  1995年   170篇
  1994年   164篇
  1993年   95篇
  1992年   130篇
  1991年   53篇
  1990年   59篇
  1989年   122篇
  1988年   48篇
  1987年   51篇
  1986年   77篇
  1985年   177篇
  1984年   146篇
  1983年   117篇
  1982年   134篇
  1981年   159篇
  1980年   57篇
  1979年   44篇
  1978年   47篇
  1977年   42篇
  1975年   42篇
  1974年   46篇
  1973年   39篇
  1972年   40篇
  1971年   48篇
  1970年   34篇
  1969年   43篇
  1967年   31篇
排序方式: 共有5291条查询结果,搜索用时 15 毫秒
381.
    
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components.  相似文献   
382.
The Pre-CME Sun     
The coronal mass ejection (CME) phenomenon occurs in closed magnetic field regions on the Sun such as active regions, filament regions, transequatorial interconnection regions, and complexes involving a combination of these. This chapter describes the current knowledge on these closed field structures and how they lead to CMEs. After describing the specific magnetic structures observed in the CME source region, we compare the substructures of CMEs to what is observed before eruption. Evolution of the closed magnetic structures in response to various photospheric motions over different time scales (convection, differential rotation, meridional circulation) somehow leads to the eruption. We describe this pre-eruption evolution and attempt to link them to the observed features of CMEs. Small-scale energetic signatures in the form of electron acceleration (signified by nonthermal radio bursts at metric wavelengths) and plasma heating (observed as compact soft X-ray brightening) may be indicative of impending CMEs. We survey these pre-eruptive energy releases using observations taken before and during the eruption of several CMEs. Finally, we discuss how the observations can be converted into useful inputs to numerical models that can describe the CME initiation.  相似文献   
383.
EXOSAT observed LMC X-4 on November 17/19, 1983 for one 1.4 day binary period during the high state of the 30.5 day cycle. An eclipse with sharp ingress and slow egress was detected with an eclipse angle of 27.1±1.0 dgr. In the medium energy experiment the source showed a hard power law spectrum. Outside eclipse the source was remarkably constant and only one flare was detected on November 17 at 19 UT lasting for about 1 h. The energy spectrum of the source softens considerably during that time and shows an emission line of cold iron. 13.5 sec pulsations are strongly present during the flare and have also been detected during the quiescent period and during several 1 min flares in another EXOSAT LMC X-4 observation on November 22, 1983. A pulse delay time analysis results in the determination of the pulse period (13.5019±0.0002) s and of the semimajor axis of the orbit of the X-ray star (26.0±0.6) It-sec. These results, together with other available information on LMC X-4, allowed to improve the binary parameters. The mass of the neutron star is found to be 1.34 ±0.44 0.48 Mo (95% confidence errors).  相似文献   
384.
In this paper, we present an algorithm for geometrically nonlinear finite element analysis of the shells of revolution. Use is made of the most proper algorithms for vector interpolation of displacements through the nodal unknowns and an efficient algorithm for obtaining the stress-strain increment relation at a step of loading. By comparing the results of analyzing a geometrically nonlinear shell of revolution obtained on the basis of the ANSYS software with the scalar interpolation of displacements with those obtained on the basis of an author-developed finite element, it has been shown that application of the FEM vector displacement interpolation leads to increasing the accuracy of the finite element solutions in analyzing the stress-strain state of the geometrically nonlinear shells.  相似文献   
385.
    
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.  相似文献   
386.
    
The Crab was observed in a balloon flight from Palestine/Texas on 9/28/81 at hard X-ray energies (20–200 keV). The light curve is significantly sharper than reported previously for this energy range. The pulse-averaged as well as the interpulse spectra show breaks in our energy-range. The variation of spectral index across the pulse has an amplitude similar to that found at lower energies by OSO-8 and larger than reported by HEAO-1 A4 at hard X-rays. For a sharp emission line at 77 keV a 99% upper limit of 1.0*10−3 photons/ cm2 sec can be placed, a factor of 4 lower than line fluxes reported previously. Pulse-shape fits to the optical, X-ray, hard X-ray and gamma ray light-curves reveal a consistent picture of the origin of the interpulse and off-pulse emission, the breaks in the spectra and the variation of spectral index, providing arguments against a thermal component and also a polar cap emission model for NP0532.  相似文献   
387.
  总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   
388.
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits.  相似文献   
389.
390.
One of the primary mission risks tracked in the development of all spacecraft is that due to micro-meteoroids and orbital debris (MMOD). Both types of particles, especially those larger than 0.1 mm in diameter, contain sufficient kinetic energy due to their combined mass and velocities to cause serious damage to crew members and spacecraft. The process used to assess MMOD risk consists of three elements: environment, damage prediction, and damage tolerance. Orbital debris risk assessments for the Orion vehicle, as well as the Shuttle, Space Station and other satellites use ballistic limit equations (BLEs) that have been developed using high speed impact test data and results from numerical simulations that have used spherical projectiles. However, spheres are not expected to be a common shape for orbital debris; rather, orbital debris fragments might be better represented by other regular or irregular solids. In this paper we examine the general construction of NASA’s current orbital debris (OD) model, explore the potential variations in orbital debris mass and shape that are possible when using particle characteristic length to define particle size (instead of assuming spherical particles), and, considering specifically the Orion vehicle, perform an orbital debris risk sensitivity study taking into account variations in particle mass and shape as noted above. While the results of the work performed for this study are preliminary, they do show that continuing to use aluminum spheres in spacecraft risk assessments could result in an over-design of its MMOD protection systems. In such a case, the spacecraft could be heavier than needed, could cost more than needed, and could cost more to put into orbit than needed. The results obtained in this study also show the need to incorporate effects of mass and shape in mission risk assessment prior to first flight of any spacecraft as well as the need to continue to develop/refine BLEs so that they more accurately reflect the shape and material density variations inherent to the actual debris environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号