全文获取类型
收费全文 | 3491篇 |
免费 | 9篇 |
国内免费 | 6篇 |
专业分类
航空 | 1549篇 |
航天技术 | 1263篇 |
综合类 | 181篇 |
航天 | 513篇 |
出版年
2021年 | 22篇 |
2019年 | 23篇 |
2018年 | 64篇 |
2017年 | 36篇 |
2016年 | 39篇 |
2015年 | 21篇 |
2014年 | 78篇 |
2013年 | 94篇 |
2012年 | 80篇 |
2011年 | 130篇 |
2010年 | 75篇 |
2009年 | 144篇 |
2008年 | 175篇 |
2007年 | 95篇 |
2006年 | 87篇 |
2005年 | 91篇 |
2004年 | 97篇 |
2003年 | 100篇 |
2002年 | 164篇 |
2001年 | 165篇 |
2000年 | 53篇 |
1999年 | 86篇 |
1998年 | 101篇 |
1997年 | 80篇 |
1996年 | 102篇 |
1995年 | 120篇 |
1994年 | 85篇 |
1993年 | 52篇 |
1992年 | 78篇 |
1991年 | 32篇 |
1990年 | 27篇 |
1989年 | 67篇 |
1988年 | 26篇 |
1987年 | 25篇 |
1986年 | 29篇 |
1985年 | 113篇 |
1984年 | 99篇 |
1983年 | 62篇 |
1982年 | 85篇 |
1981年 | 107篇 |
1980年 | 27篇 |
1979年 | 18篇 |
1978年 | 24篇 |
1977年 | 23篇 |
1975年 | 19篇 |
1974年 | 25篇 |
1972年 | 20篇 |
1971年 | 21篇 |
1970年 | 20篇 |
1969年 | 24篇 |
排序方式: 共有3506条查询结果,搜索用时 15 毫秒
881.
A. Sprague J. Warell G. Cremonese Y. Langevin J. Helbert P. Wurz I. Veselovsky S. Orsini A. Milillo 《Space Science Reviews》2007,132(2-4):399-431
Mercury’s surface is thought to be covered with highly space-weathered silicate material. The regolith is composed of material
accumulated during the time of planetary formation, and subsequently from comets, meteorites, and the Sun. Ground-based observations
indicate a heterogeneous surface composition with SiO2 content ranging from 39 to 57 wt%. Visible and near-infrared spectra, multi-spectral imaging, and modeling indicate expanses
of feldspathic, well-comminuted surface with some smooth regions that are likely to be magmatic in origin with many widely
distributed crystalline impact ejecta rays and blocky deposits. Pyroxene spectral signatures have been recorded at four locations.
Although highly space weathered, there is little evidence for the conversion of FeO to nanophase metallic iron particles (npFe0), or “iron blebs,” as at the Moon. Near- and mid-infrared spectroscopy indicate clino- and ortho-pyroxene are present at
different locations. There is some evidence for no- or low-iron alkali basalts and feldspathoids. All evidence, including
microwave studies, point to a low iron and low titanium surface. There may be a link between the surface and the exosphere
that may be diagnostic of the true crustal composition of Mercury. A structural global dichotomy exists with a huge basin
on the side not imaged by Mariner 10. This paper briefly describes the implications for this dichotomy on the magnetic field
and the 3 : 2 spin : orbit coupling. All other points made above are detailed here with an account of the observations, the
analysis of the observations, and theoretical modeling, where appropriate, that supports the stated conclusions. 相似文献
882.
C. Giammanco P. Bochsler R. Karrer F. M. Ipavich J. A. Paquette P. Wurz 《Space Science Reviews》2007,130(1-4):329-333
Solar chemical abundances are determined by comparing solar photospheric spectra with synthetic ones obtained for different
sets of abundances and physical conditions. Although such inferred results are reliable, they are model dependent. Therefore,
one compares them with the values for the local interstellar medium (LISM). The argument is that they must be similar, but
even for LISM abundance determinations models play a fundamental role (i.e., temperature fluctuations, clumpiness, photon
leaks). There are still two possible comparisons—one with the meteoritic values and the second with solar wind abundances.
In this work we derive a first estimation of the solar wind element ratios of sulfur relative to calcium and magnesium, two
neighboring low-FIP elements, using 10 years of CELIAS/MTOF data. We compare the sulfur abundance with the abundance determined
from spectroscopic observations and from solar energetic particles. Sulfur is a moderately volatile element, hence, meteoritic
sulfur may be depleted relative to non-volatile elements, if compared to its original solar system value. 相似文献
883.
H. Nilsson R. Lundin K. Lundin S. Barabash H. Borg O. Norberg A. Fedorov J.-A Sauvaud H. Koskinen E. Kallio P. Riihelä J. L. Burch 《Space Science Reviews》2007,128(1-4):671-695
The Ion Composition Analyzer (ICA) is part of the Rosetta Plasma Consortium (RPC). ICA is designed to measure the three-dimensional
distribution function of positive ions in order to study the interaction between the solar wind and cometary particles. The
instrument has a mass resolution high enough to resolve the major species such as protons, helium, oxygen, molecular ions,
and heavy ions characteristic of dusty plasma regions. ICA consists of an electrostatic acceptance angle filter, an electrostatic
energy filter, and a magnetic momentum filter. Particles are detected using large diameter (100 mm) microchannel plates and
a two-dimensional anode system. ICA has its own processor for data reduction/compression and formatting. The energy range
of the instrument is from 25 eV to 40 keV and an angular field-of-view of 360° × 90° is achieved through electrostatic deflection
of incoming particles. 相似文献
884.
Lee A.Y. Yu J.W. Kahn P.B. Stoller R.L. 《IEEE transactions on aerospace and electronic systems》2002,38(2):502-514
Preliminary error budgets for the pointing knowledge, control, and stability of the Space Interferometry Mission (SIM) spacecraft are constructed using the specifications of commercial off-the-shelf attitude determination sensors, attitude control actuators, and other spacecraft capabilities that have been demonstrated in past missions. Results obtained indicate that we can meet all the presently known spacecraft pointing requirements. A large number of derived requirements are generated from this study. Examples are specifications on attitude determination sensors, attitude control actuators, minimum settling time after a rest-to-rest spacecraft slew. Preliminary error budgets constructed in this study must be updated to reflect the changing spacecraft design and requirements 相似文献
885.
886.
887.
G. Randall Gladstone Steven C. Persyn John S. Eterno Brandon C. Walther David C. Slater Michael W. Davis Maarten H. Versteeg Kristian B. Persson Michael K. Young Gregory J. Dirks Anthony O. Sawka Jessica Tumlinson Henry Sykes John Beshears Cherie L. Rhoad James P. Cravens Gregory S. Winters Robert A. Klar Walter Lockhart Benjamin M. Piepgrass Thomas K. Greathouse Bradley J. Trantham Philip M. Wilcox Matthew W. Jackson Oswald H. W. Siegmund John V. Vallerga Rick Raffanti Adrian Martin J.-C. Gérard Denis C. Grodent Bertrand Bonfond Benoit Marquet François Denis 《Space Science Reviews》2017,213(1-4):447-473
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS. 相似文献
888.
The Juno Radiation Monitoring (RM) Investigation 总被引:1,自引:0,他引:1
H. N. Becker J. W. Alexander A. Adriani A. Mura A. Cicchetti R. Noschese J. L. Jørgensen T. Denver J. Sushkova A. Jørgensen M. Benn J. E. P. Connerney S. J. Bolton The Selex Galileo Juno SRU Team J. Allison S. Watts V. Adumitroaie E. A. Manor-Chapman I. J. Daubar C. Lee S. Kang W. J. McAlpine T. Di Iorio C. Pasqui A. Barbis P. Lawton L. Spalsbury S. Loftin J. Sun 《Space Science Reviews》2017,213(1-4):507-545
The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno’s star cameras and science instruments at Jupiter. The investigation’s objective is to profile Jupiter’s \(>10\mbox{-MeV}\) electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation’s data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno’s first science orbit, and how the measurements may be used to infer the external relativistic electron environment. 相似文献
889.
Schiller G.J. Maybeck P.S. 《IEEE transactions on aerospace and electronic systems》1997,33(4):1122-1131
The application of moving-bank multiple model adaptive estimation and control (MMAE/MMAC) algorithms to an actual spade structure (Space Integrated Controls Experiment (SPICE)) being examined at Phillips Laboratory at Kirtland AFB, NM, is presented. The structure consists of a large platform and a smaller platform connected by three legs in a tripod fashion. Kalman filtering and LQG (linear system, quadratic cost, Gaussian noise) control techniques are utilized as the primary design tools for the components of the MMAE/MMAC. Implementing a bank of filters or controllers increases the robustness of the algorithms when uncertainties exist in the system model, whereas the moving bank is utilized to reduce the computational load. Several reduced-order models are developed from the truth model using modal analysis and modal cost analysis. The MMAE/MMAC design with a substantially reduced-order filter model provides an excellent method to estimate a wide range of parameter variations and to quell oscillations in the structure. 相似文献
890.
White N.A. Maybeck P.S. DeVilbiss S.L. 《IEEE transactions on aerospace and electronic systems》1998,34(4):1208-1217
Previous research at the Air Force Institute of Technology (AFIT) has resulted in the design of a differential Global Positioning System (DGPS) aided INS-based (inertial navigation system) precision landing system (PLS) capable of meeting the FAA precision requirements for instrument landings. The susceptibility of DGPS transmissions to both intentional and nonintentional interference/jamming and spoofing must be addressed before DGPS may be safely used as a major component of such a critical navigational device. This research applies multiple model adaptive estimation (MMAE) techniques to the problem of detecting and identifying interference/jamming and spoofing in the DGPS signal. Such an MMAE is composed of a bank of parallel filters, each hypothesizing a different failure status, along with an evaluation of the current probability of each hypothesis being correct, to form a probability-weighted average state estimate as an output. For interference/jamming degradation represented as increased measurement noise variance, simulation results show that, because of the good failure detection and isolation (FDI) performance using MMAE, the blended navigation performance is essentially that of a single extended Kalman filter (EKF) artificially informed of the actual interference noise variance. However, a standard MMAE is completely unable to detect spoofing failures (modeled as a bias or ramp offset signal directly added to the measurement). This work describes a moving-bank pseudoresidual MMAE (PRMMAE) to detect and identify such spoofing. Using the PRMMAE algorithm, spoofing is very effectively detected and isolated; the resulting navigation performance is equivalent to that of an EKF operating in an environment without spoofing 相似文献