全文获取类型
收费全文 | 3484篇 |
免费 | 8篇 |
国内免费 | 6篇 |
专业分类
航空 | 1549篇 |
航天技术 | 1253篇 |
综合类 | 181篇 |
航天 | 515篇 |
出版年
2021年 | 21篇 |
2019年 | 23篇 |
2018年 | 63篇 |
2017年 | 36篇 |
2016年 | 39篇 |
2015年 | 21篇 |
2014年 | 77篇 |
2013年 | 92篇 |
2012年 | 79篇 |
2011年 | 130篇 |
2010年 | 75篇 |
2009年 | 142篇 |
2008年 | 175篇 |
2007年 | 95篇 |
2006年 | 87篇 |
2005年 | 91篇 |
2004年 | 97篇 |
2003年 | 100篇 |
2002年 | 164篇 |
2001年 | 165篇 |
2000年 | 53篇 |
1999年 | 86篇 |
1998年 | 101篇 |
1997年 | 80篇 |
1996年 | 102篇 |
1995年 | 120篇 |
1994年 | 85篇 |
1993年 | 52篇 |
1992年 | 78篇 |
1991年 | 32篇 |
1990年 | 27篇 |
1989年 | 67篇 |
1988年 | 26篇 |
1987年 | 25篇 |
1986年 | 29篇 |
1985年 | 113篇 |
1984年 | 99篇 |
1983年 | 62篇 |
1982年 | 85篇 |
1981年 | 107篇 |
1980年 | 27篇 |
1979年 | 18篇 |
1978年 | 24篇 |
1977年 | 23篇 |
1975年 | 19篇 |
1974年 | 25篇 |
1972年 | 20篇 |
1971年 | 21篇 |
1970年 | 20篇 |
1969年 | 24篇 |
排序方式: 共有3498条查询结果,搜索用时 15 毫秒
351.
Previous attempts to identify aircraft stability and control derivatives from flight test data, using three-degrees-of-freedom (3-DOF) longitudinal or lateral-directional perturbation equation-of-motion models, suffer from the disadvantage that the coupling between the longitudinal and lateral-directional dynamics has been ignored. In this paper, the identification of aircraft stability parameters is accomplished using a more accurate 6-DOF model which includes this coupling. Hierarchical system identification theory is used to reduce the computational effort involved. The 6-DOF system of equations is first decomposed into two 3-DOF subsystems, one for the longitudinal dynamics and the other for the lateral-directional dynamics. The two subsystem parameter identification processes are then coordinated in such a way that the overall system parameter identification problem is solved. Next, a six-subsystem decomposition is considered. Computational considerations and comparison with the unhierarchically structured problem are presented. 相似文献
352.
Radio frequency spectrum management for the 1970's is discussed, with the role of IEEE's Joint Technical Advisory Committee defined. 相似文献
353.
P.T. Gallagher C.A. Young J.P. Byrne R.T.J. McAteer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic field that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and suppressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications. 相似文献
354.
355.
This paper presents the results of analyzing the shaping of thin-walled conical parts with the uniform thickness along generatrix. 相似文献
356.
D. T. Young J. L. Burch R. G. Gomez A. De Los Santos G. P. Miller P. Wilson N. Paschalidis S. A. Fuselier K. Pickens E. Hertzberg C. J. Pollock J. Scherrer P. B. Wood E. T. Donald D. Aaron J. Furman D. George R. S. Gurnee R. S. Hourani A. Jacques T. Johnson T. Orr K. S. Pan S. Persyn S. Pope J. Roberts M. R. Stokes K. J. Trattner J. M. Webster 《Space Science Reviews》2016,199(1-4):407-470
357.
J. B. Blake B. H. Mauk D. N. Baker P. Carranza J. H. Clemmons J. Craft W. R. Crain A. Crew Y. Dotan J. F. Fennell R. H. Friedel L. M. Friesen F. Fuentes R. Galvan C. Ibscher A. Jaynes N. Katz M. Lalic A. Y. Lin D. M. Mabry T. Nguyen C. Pancratz M. Redding G. D. Reeves S. Smith H. E. Spence J. Westlake 《Space Science Reviews》2016,199(1-4):309-329
358.
359.
360.
J. D. Anderson J. W. Armstrong J. K. Campbell F. B. Estabrook T. P. Krisher E. L. Lau 《Space Science Reviews》1992,60(1-4):591-610
The gravitation and celestial mechanics investigations during the cruise phase and Orbiter phase of the Galileo mission depend on Doppler and ranging measurements generated by the Deep Space Network (DSN) at its three spacecraft tracking sites in California, Australia, and Spain. Other investigations which also rely on DSN data, and which like ours fall under the general discipline of spacecraft radio science, are described in a companion paper by Howard et al. (1992). We group our investigations into four broad categories as follows: (1) the determination of the gravity fields of Jupiter and its four major satellites during the orbital tour, (2) a search for gravitational radiation as evidenced by perturbations to the coherent Doppler link between the spacecraft and Earth, (3) the mathematical modeling, and by implication tests, of general relativistic effects on the Doppler and ranging data during both cruise and orbiter phases, and (4) an improvement in the ephemeris of Jupiter by means of spacecraft ranging during the Orbiter phase. The gravity fields are accessible because of their effects on the spacecraft motion, determined primarily from the Doppler data. For the Galilean satellites we will determine second degree and order gravity harmonics that will yield new information on the central condensation and likely composition of material within these giant satellites (Hubbard and Anderson, 1978). The search for gravitational radiation is being conducted in cruise for periods of 40 days centered around solar opposition. During these times the radio link is least affected by scintillations introduced by solar plasma. Our sensitivity to the amplitude of sinusoidal signals approaches 10-15 in a band of gravitational frequencies between 10-4 and 10-3 Hz, by far the best sensitivity obtained in this band to date. In addition to the primary objectives of our investigations, we discuss two secondary objectives: the determination of a range fix on Venus during the flyby on 10 February, 1990, and the determination of the Earth's mass (GM) from the two Earth gravity assists, EGA1 in December 1990 and EGA2 in December 1992. 相似文献