In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations. 相似文献
In 1996 the NASA Advisory Council asked for a comprehensive look at future launch projections out to the year 2030 and beyond. In response to this request NASA sponsored a study at The Aerospace Corporation to develop long-range space transportation models for future commercial and government applications, and to analyze the design considerations and desired characteristics for future space transportation systems. Follow-ons to present space missions as well as a wide array of potential new space applications are considered in the study. This paper summarizes the space transportation system characteristics required to enable various classes of future missions. High reliability and the ability to achieve high flight rates per vehicle are shown to be key attributes for achieving more economical launch systems. Technical, economic and policy implications are also discussed. 相似文献
The transport characteristics of macroparticles, charged by the solar radiation under microgravity conditions, were investigated by analyzing the videorecords of experiments carried out onboard the Mirorbital station. The temperature, distributions of velocities, charge, friction coefficient, and diffusion coefficient were obtained for bronze particles. 相似文献
The local radiation belts of the Sun are defined as giant quasi-stationary coronal and heliospheric traps for solar cosmic rays. These traps are formed by loop magnetic fields, both solar and interplanetary. Using observational data, some experimental examples of the local radiation belts of the Sun are considered. The hypotheses on the origin of energetic particles in the outer heliosphere and on the local radiation belts of the Sun are discussed. 相似文献
The paper elaborates on “ lessons learned” from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely:
1. a) the adaptations of industrial and public organisations to the global market needs;
2. b) the understanding of the bottleneck factors limiting competitiveness;
3. c) the trends toward new system architectures and new engineering and production methods;
4. d) the understanding of the role of new technology in the future applications.
Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the “better, faster, cheaper” philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes.
A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for “faster, better, cheaper” appears to concern primarily “cost-effective”, performant autonomous spacecraft, “cost-effective”, reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet.
In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance. 相似文献
One of the most important problems for performing a good design of the spacecraft attitude control law is connected to its robustness when some uncertainty parameters are present on the inertial and/or on the elastic characteristics of a satellite. These uncertainties are generally intrinsic on the modeling of complex structures and in the case of large flexible structures they can be also attributed to secondary effects associated to the elasticity. One of the most interesting issues in modeling large flexible space structures is associated to the evaluation of the inertia tensor which in general depends not only on the geometric ‘fixed’ characteristic of the satellite but also on its elastic displacements which of course in turn modify the ‘shape’ of the satellite. Usually these terms can be considered of a second order of magnitude if compared with the ones associated to the rigid part of a structure. However the increasing demand on the dimension of satellites due to the presence for instance of very large solar arrays (necessary to generate power) and/or large antennas has the necessity to investigate their effects on their global dynamic behavior in more details as a consequence. In the present paper a methodology based on classical Lagrangian approach coupled with a standard Finite Element tool has been used to derive the full dynamic equations of an orbiting flexible satellite under the actions of gravity, gravity gradient forces and attitude control. A particular attention has been paid to the study of the effects of flexibility on the inertial terms of the spacecraft which, as well known, influence its attitude dynamic behavior. Furthermore the effects of the attitude control authority and its robustness to the uncertainties on inertial and elastic parameters has been investigated and discussed. 相似文献