The local radiation belts of the Sun are defined as giant quasi-stationary coronal and heliospheric traps for solar cosmic rays. These traps are formed by loop magnetic fields, both solar and interplanetary. Using observational data, some experimental examples of the local radiation belts of the Sun are considered. The hypotheses on the origin of energetic particles in the outer heliosphere and on the local radiation belts of the Sun are discussed. 相似文献
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind’s interaction with solar system obstacles like Earth’s magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1–2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds ((sim1~mbox{keV})) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers.Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth’s exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV “lobster-eye” telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers. 相似文献
In this paper a linear, closed-form analysis of the buckling behavior of an orthotropic plate with elastic clamping and edge reinforcement under uniform compressive load is presented. This is a typical structural situation found in aerospace engineering for instance as stiffeners in wings or the fuselage. All governing equations are transformed in a dimensionless system using common characteristic quantities to gain good analytical access. The buckling behavior is analyzed and generic buckling diagrams are presented. The solutions show excellent agreement with results from literature and numerical analyses.The minimum bending stiffness of the edge reinforcement needed to withstand buckling is examined and a minimum stiffness criterion is presented. Furthermore an absolute minimum bending stiffness is found which is sufficient to enable the reinforcement to act as a near-rigid support for arbitrarily long plates. These criteria are of interest for optimized lightweight design of stringers and stiffeners. 相似文献
Active region NOAA 11158 produced many flares during its disk passage. At least two of these flares can be considered as homologous: the C6.6 flare at 06:51 UT and C9.4 flare at 12:41 UT on February 14, 2011. Both flares occurred at the same location (eastern edge of the active region) and have a similar decay of the GOES soft X-ray light curve. The associated coronal mass ejections (CMEs) were slow (334 and 337 km/s) and of similar apparent widths (43° and 44°), but they had different radio signatures. The second event was associated with a metric type II burst while the first one was not. The COR1 coronagraphs on board the STEREO spacecraft clearly show that the second CME propagated into the preceding CME that occurred 50 min before. These observations suggest that CME–CME interaction might be a key process in exciting the type II radio emission by slow CMEs. 相似文献
We review the X- and gamma-ray observations of Cygnus X-1 and their theoretical interpretations, with emphasis on new developments since the mid-1970's. The overall data base at present is most consistent with the inverse Compton model by hot thermal electrons of Te 109 K, for the hard X-ray luminosity (10–200 keV). However, the origin of the soft X-rays ( 10 keV) in high states and gamma rays (> 200 keV) remain unsettled.Operated under DOE Contract W-7405-Eng-48.Partially supported by NASA Grant NGR 05-020-668.NRC/NRL Research Associate. 相似文献
In June 2003, the geochemical composition of geothermal fluids was determined at 9 sites in the Vulcano hydrothermal system, including sediment seeps, geothermal wells, and submarine vents. Compositional data were combined with standard state reaction properties to determine the overall Gibbs free energy (DeltaG(r) ) for 120 potential lithotrophic and heterotrophic reactions. Lithotrophic reactions in the H-O-N-S-C-Fe system were considered, and exergonic reactions yielded up to 120 kJ per mole of electrons transferred. The potential for heterotrophy was characterized by energy yields from the complete oxidation of 6 carboxylic acids- formic, acetic, propanoic, lactic, pyruvic, and succinic-with the following redox pairs: O(2)/H(2)O, SO(4) (2)/H(2)S, NO(3) ()/NH(4) (+), S(0)/H(2)S, and Fe(3)O(4)/Fe(2+). Heterotrophic reactions yielded 6-111 kJ/mol e(). Energy yields from both lithotrophic and heterotrophic reactions were highly dependent on the terminal electron acceptor (TEA); reactions with O(2) yielded the most energy, followed by those with NO(3) (), Fe(III), SO(4) (2), and S(0). When only reactions with complete TEA reduction were included, the exergonic lithotrophic reactions followed a similar electron tower. Spatial variability in DeltaG(r) was significant for iron redox reactions, owing largely to the wide range in Fe(2+) and H(+) concentrations. Energy yields were compared to those obtained for samples collected in June 2001. The temporal variations in geochemical composition and energy yields observed in the Vulcano hydrothermal system between 2001 and 2003 were moderate. The largest differences in DeltaG(r) over the 2 years were from iron redox reactions, due to temporal changes in the Fe(2+) and H(+) concentrations. The observed variations in fluid composition across the Vulcano hydrothermal system have the potential to influence not only microbial diversity but also the metabolic strategies of the resident microbial communities. 相似文献
CMEs have been observed for over 30 years with a wide variety of instruments. It is now possible to derive detailed and quantitative information on CME morphology, velocity, acceleration and mass. Flares associated with CMEs are observed in X-rays, and several different radio signatures are also seen. Optical and UV spectra of CMEs both on the disk and at the limb provide velocities along the line of sight and diagnostics for temperature, density and composition. From the vast quantity of data we attempt to synthesize the current state of knowledge of the properties of CMEs, along with some specific observed characteristics that illuminate the physical processes occurring during CME eruption. These include the common three-part structures of CMEs, which is generally attributed to compressed material at the leading edge, a low-density magnetic bubble and dense prominence gas. Signatures of shock waves are seen, but the location of these shocks relative to the other structures and the occurrence rate at the heights where Solar Energetic Particles are produced remains controversial. The relationships among CMEs, Moreton waves, EIT waves, and EUV dimming are also cloudy. The close connection between CMEs and flares suggests that magnetic reconnection plays an important role in CME eruption and evolution. We discuss the evidence for reconnection in current sheets from white-light, X-ray, radio and UV observations. Finally, we summarize the requirements for future instrumentation that might answer the outstanding questions and the opportunities that new space-based and ground-based observatories will provide in the future. 相似文献
The Dawn science operations team has designed the Vesta mission within the constraints of a low-cost Discovery mission, and will apply the same methodology to the Ceres mission. The design employs proactive mapping mission strategies and tactics such as functional redundancy, adaptability to trajectory uncertainties, and easy sequence updates to deliver reliable and robust sequences. Planning tools include the Science Opportunity Analyzer and other multi-mission tools, and the Science time-ordered listings. Science operations are conducted jointly by the Science Operations Support Team at the Jet Propulsion Laboratory (JPL) and the Dawn Science Center at the University of California, Los Angeles (UCLA). The UCLA Dawn Science Center has primary responsibility for data archiving while the JPL team has primary responsibility for spacecraft and instrument operations. Constraints and uncertainties in the planning and sequencing environment are described, and then details of the science plan are presented for each mission sub-phase. The plans indicate that Dawn has a high probability of meeting its science objectives and requirements within the imposed constraints. 相似文献
The current state of knowledge concerning Birkeland currents (j∥) and parallel electric field (E∥) is briefly reviewed. Four types of j∥ are discussed-the primary ‘region 1’ sheets, the ‘region 2’ sheets which parallel them and which seem to close in the partial ring current, the cusp currents which appear to correlate with interplanetary By, and the ‘Harang filament’. The energy required by E∥ and by the associated particle acceleration processes seems to be derived from j∥. Much of the evidence for e∥ comes from particles, from ‘inverted V’ spectra, rising ion beams and expanded loss cones, while ‘conies’ may signify acceleration by Electrostatic Ion Cyclotron (EIC) waves, associated with beams accelerated by E∥. Different theoretical studies predict for E∥ a smooth, disordered or abrupt structure, and evidence for all 3 types can be deduced from S3-3 electric field probe observations.
The paper is concerned with the numerical simulation and the analysis of some kinds of flow regimes which can develop in Bridgman and Czochralski systems for material processings. The flows in the liquid phase are investigated considering two-dimensional and axisymmetric models. The time-dependent regimes were studied for a zero-Prandtl-number fluid layer confined inside a two-dimensional cavity of aspect ratio (length-to-height) A=4, involving a stress-free upper surface and submitted to a horizontal temperature gradient. The range of Grashof number was varied up to the conditions at which the flow goes from oscillatory to chaotic type behaviours. The combined influence of the temperature gradients and of the rotations of the crucible and of the seed/crystal was investigated for a Czochralski model. The axisymmetric regimes were studied for a Prm=0.015 liquid melt confined inside a cylindrical crucible of aspect ratio (height-to-radius) Am=2, and coupled to a viscous encapsulant liquid layer (10<Pre<1200) of aspect ratio Ae=0.5. A number of steady and (transient) time-dependent flow patterns are identified. 相似文献