全文获取类型
收费全文 | 3986篇 |
免费 | 134篇 |
国内免费 | 69篇 |
专业分类
航空 | 1911篇 |
航天技术 | 1338篇 |
综合类 | 258篇 |
航天 | 682篇 |
出版年
2022年 | 25篇 |
2021年 | 47篇 |
2020年 | 20篇 |
2019年 | 41篇 |
2018年 | 84篇 |
2017年 | 61篇 |
2016年 | 62篇 |
2015年 | 36篇 |
2014年 | 98篇 |
2013年 | 114篇 |
2012年 | 111篇 |
2011年 | 173篇 |
2010年 | 104篇 |
2009年 | 181篇 |
2008年 | 207篇 |
2007年 | 137篇 |
2006年 | 120篇 |
2005年 | 120篇 |
2004年 | 110篇 |
2003年 | 116篇 |
2002年 | 176篇 |
2001年 | 182篇 |
2000年 | 66篇 |
1999年 | 102篇 |
1998年 | 112篇 |
1997年 | 88篇 |
1996年 | 119篇 |
1995年 | 129篇 |
1994年 | 96篇 |
1993年 | 60篇 |
1992年 | 88篇 |
1991年 | 40篇 |
1990年 | 30篇 |
1989年 | 72篇 |
1988年 | 31篇 |
1987年 | 27篇 |
1986年 | 29篇 |
1985年 | 114篇 |
1984年 | 99篇 |
1983年 | 62篇 |
1982年 | 87篇 |
1981年 | 110篇 |
1980年 | 27篇 |
1978年 | 24篇 |
1977年 | 23篇 |
1974年 | 25篇 |
1972年 | 20篇 |
1971年 | 21篇 |
1970年 | 20篇 |
1969年 | 24篇 |
排序方式: 共有4189条查询结果,搜索用时 13 毫秒
921.
M. Yamauchi Y. Futaana A. Fedorov E. Dubinin R. Lundin J.-A. Sauvaud D. Winningham R. Frahm S. Barabash M. Holmstrom J. Woch M. Fraenz E. Budnik H. Borg J. R. Sharber A. J. Coates Y. Soobiah H. Koskinen E. Kallio K. Asamura H. Hayakawa C. Curtis K. C. Hsieh B. R. Sandel M. Grande A. Grigoriev P. Wurz S. Orsini P. Brandt S. Mckenna-Lawler J. Kozyra J. Luhmann 《Space Science Reviews》2006,126(1-4):239-266
Although the Mars Express (MEX) does not carry a magnetometer, it is in principle possible to derive the interplanetary magnetic
field (IMF) orientation from the three dimensional velocity distribution of pick-up ions measured by the Ion Mass Analyser
(IMA) on board MEX because pick-up ions' orbits, in velocity phase space, are expected to gyrate around the IMF when the IMF
is relatively uniform on a scale larger than the proton gyroradius. During bow shock outbound crossings, MEX often observed
cycloid distributions (two dimensional partial ring distributions in velocity phase space) of protons in a narrow channel
of the IMA detector (only one azimuth for many polar angles). We show two such examples. Three different methods are used
to derive the IMF orientation from the observed cycloid distributions. One method is intuitive (intuitive method), while the
others derive the minimum variance direction of the velocity vectors for the observed ring ions. These velocity vectors are
selected either manually (manual method) or automatically using simple filters (automatic method). While the intuitive method
and the manual method provide similar IMF orientations by which the observed cycloid distribution is well arranged into a
partial circle (representing gyration) and constant parallel velocity, the automatic method failed to arrange the data to
the degree of the manual method, yielding about a 30° offset in the estimated IMF direction. The uncertainty of the derived
IMF orientation is strongly affected by the instrument resolution. The source population for these ring distributions is most
likely newly ionized hydrogen atoms, which are picked up by the solar wind. 相似文献
922.
923.
R. M. Millan M. P. McCarthy J. G. Sample D. M. Smith L. D. Thompson D. G. McGaw L. A. Woodger J. G. Hewitt M. D. Comess K. B. Yando A. X. Liang B. A. Anderson N. R. Knezek W. Z. Rexroad J. M. Scheiman G. S. Bowers A. J. Halford A. B. Collier M. A. Clilverd R. P. Lin M. K. Hudson 《Space Science Reviews》2013,179(1-4):503-530
BARREL is a multiple-balloon investigation designed to study electron losses from Earth’s Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (~20 kg) stratospheric balloons will be successively launched to maintain an array of ~5 payloads spread across ~6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL will provide the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles are available, and will characterize the spatial scale of precipitation at relativistic energies. All data and analysis software will be made freely available to the scientific community. 相似文献
924.
The means for enhancing the efficiency of rocket propulsion of spacecraft is considered in terms of the control of propellant consumption, trajectory planning, and in-flight operations management. Particular attention is given to techniques by which all the fuel and oxidizer are consumed completely by mixture adjustment as an example of a terminal control system providing significant propulsion efficiency. 相似文献
925.
926.
本文详细论述了求解周期系数微分方程的Floquet理论及其在直升机旋翼-机身耦合动不稳定性分析中的应用,建立了一套实用的计算方法。这种计算方法,不仅可以分析旋翼特性各向同性的情况,还可以分析旋翼特性各向异性的情况,尤其对于旋翼特性各向异性情况下的旋翼-机身耦合动不稳定性的分析,该计算方法是目前最为有效和可靠的方法。本文给出了旋翼特性各向同性和各向异性情况下直升机旋翼-机身耦合动不稳定性算例计算结果,分析了一个减摆器失效和减摆器阻尼特性存在差异度情况下的耦合系统的动不稳定性,并得出明确的结论。 相似文献
927.
Filter robustness is defined herein as the ability of the Global Positioning System/Inertial Navigation System (GPS-INS) Kalman filter to cope with adverse environments and input conditions, to successfully identify such conditions and to take evasive action. The formulation of two such techniques for a cascaded GPS-INS Kalman filter integration is discussed This is an integration in which the navigation solution from a GPS receiver is used as a measurement in the filter to estimate inertial errors and instrument biases. The first technique presented discusses the handling of GPS position biases. These are due to errors in the GPS satellite segment, and are known to be unobservable. They change levels when a satellite constellation change occurs, at which point they introduce undesirable filter response transients. A method of suppressing these transients is presented. The second technique presented deals with the proper identification of the filter measurement noise. Successful formulation of the noise statistics is a factor vital to the healthy estimation of the filter gains and operation. Furthermore, confidence in the formulation of these statistics can lead to the proper screening and rejection of bad data in the filter. A method of formulating the filter noise statistics dynamically based on inputs from the GPS and the INS is discussed 相似文献
928.
In March/April 1984 eleven EXOSAT observations of Her X-1 were performed sampling a full 35 day cycle. Spectral analysis of the ME and GSPC data shows that the iron line emission is present during all phases. During the main-on state we see an iron line at 6.65 ± 0.07 keV with a FWHM of 1–2 keV and an equivalent width of 300 to 400 eV. The high resolution GSPC data indicate that the line profiles have external wings and are not simple Gaussian. We report for the first time on the detection of an iron line during the intermediate-on state with about the same parameters as the main-on state line but an equivalent width a factor of 2 larger. During the off state between main-on and intermediate-on we detected a broad iron line feature at about 6.0 keV with an equivalent width of 2 keV. We discuss the Alfven region and a hot corona at the inner region of the accretion disk as the possible sites of the line production. 相似文献
929.
T.P. Dachev B.T. Tomov Yu.N. Matviichuk P.S. Dimitrov S.V. Vadawale J.N. Goswami G. De Angelis V. Girish 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The RADiatiOn Monitor (RADOM) is a miniature dosimeter-spectrometer that flew onboard the Chandrayaan-1 lunar mission in order to monitor the local radiation environment. Primary objective of the RADOM experiment was to measure the total absorbed dose, flux of surrounding energetic particles and spectrum of the deposited energy from high energy particles both en-route and in lunar orbit. RADOM was the first experiment to be switched on after the launch of Chandrayaan-1 and was operational until the end of the mission. This paper summarizes the observations carried out by RADOM during the entire life time (22 October 2008–31 August 2009) of the Chandrayaan-1 mission and compares the measurement by RADOM with the radiation belt models such as AP-8, AE-8 and CRRESS. 相似文献
930.