首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3486篇
  免费   12篇
  国内免费   4篇
航空   1555篇
航天技术   1253篇
综合类   181篇
航天   513篇
  2021年   21篇
  2019年   23篇
  2018年   63篇
  2017年   36篇
  2016年   39篇
  2015年   21篇
  2014年   77篇
  2013年   92篇
  2012年   79篇
  2011年   128篇
  2010年   75篇
  2009年   142篇
  2008年   176篇
  2007年   96篇
  2006年   87篇
  2005年   93篇
  2004年   98篇
  2003年   100篇
  2002年   164篇
  2001年   165篇
  2000年   53篇
  1999年   86篇
  1998年   101篇
  1997年   80篇
  1996年   102篇
  1995年   120篇
  1994年   85篇
  1993年   52篇
  1992年   78篇
  1991年   32篇
  1990年   27篇
  1989年   67篇
  1988年   26篇
  1987年   25篇
  1986年   29篇
  1985年   113篇
  1984年   99篇
  1983年   62篇
  1982年   85篇
  1981年   107篇
  1980年   27篇
  1979年   18篇
  1978年   24篇
  1977年   23篇
  1975年   19篇
  1974年   25篇
  1972年   20篇
  1971年   21篇
  1970年   20篇
  1969年   24篇
排序方式: 共有3502条查询结果,搜索用时 31 毫秒
931.
The effectiveness of the GYROLITE attitude stabilization is discussed on the basis of the basic mathematical equations in [1], and an avenue towards improved performance is indicated.  相似文献   
932.
Brasseur  G.  De Baets  P.  De Rudder  A. 《Space Science Reviews》1983,34(4):377-385
Space Science Reviews - The variation in the solar irradiance related for example to the 11-year cycle leads to changes in the photodissociation and photo-ionization of the upper and middle...  相似文献   
933.
The Hot Plasma Experiment, F3H, on boardFreja is designed to measure auroral particle distribution functions with very high temporal and spatial resolution. The experiment consists of three different units; an electron spectrometer that measures angular and energy distributions simultaneously, a positive ion spectrometer that is using the spacecraft spin for three-dimensional measurements, and a data processing unit. The main scientific objective is to study positive ion heating perpendicular to the magnetic field lines in the auroral region. The high resolution measurements of different positive ion species and electrons have already provided important information on this process as well as on other processes at high latitudes. This includes for example high resolution observations of auroral particle precipitation features and source regions of positive ions during magnetic disturbances. TheFreja orbit with an inclination of 63° allows us to make detailed measurements in the nightside auroral oval during all disturbance levels. In the dayside, the cusp region is covered during magnetic disturbances. We will here present the instrument in some detail and some outstanding features in the particle data obtained during the first months of operation at altitudes around 1700 km in the northern hemisphere auroral region.  相似文献   
934.
Interstellar material (ISMa) is observed both inside and outside of the heliosphere. Relating these diverse sets of ISMa data provides a richer understanding of both the interstellar medium and the heliosphere. The galactic environment of the Sun is dominated by warm, low-density, partially ionized interstellar material consisting of atoms and dust grains. The properties of the heliosphere are dependent on the pressure, composition, radiation field, ionization, and magnetic field of ambient ISMa. The very low-density interior of the Local Bubble, combined with an expanding superbubble shell associated with star formation in the Scorpius-Centaurus Association, dominate the properties of the local interstellar medium (LISM). Once the heliosphere boundaries and interaction mechanisms are understood, interstellar gas, dust, pickup ions, and anomalous cosmic rays inside of the heliosphere can be directly compared to ISMa outside of the heliosphere. Our understanding of ISMa at the Sun is further enriched when the circumheliospheric interstellar material is compared to observations of other nearby ISMa and the overall context of our galactic environment. The IBEX mission will map the interaction region between the heliosphere and ISMa, and improve the accuracy of comparisons between ISMa inside and outside the heliosphere.  相似文献   
935.
There is a growing need for accurate and time efficient modelling of electrical distribution networks within the aerospace industry, for which power electronic converters are an integral part. Simplifying converter models is necessary to improve simulation execution times, however many existing techniques do not necessarily give accurate results for all types of system level studies. This paper describes an alternative modelling approach to these, which provides accurate results and reduced simulation times for studies of electrical fault analyses.  相似文献   
936.
The magnetic field experiment to be carried on the Voyager 1 and 2 missions consists of dual low field (LFM) and high field magnetometer (HFM) systems. The dual systems provide greater reliability and, in the case of the LFM's, permit the separation of spacecraft magnetic fields from the ambient fields. Additional reliability is achieved through electronics redundancy. The wide dynamic ranges of ± 0.5 G for the LFM's and ± 20 G for the HFM's, low quantization uncertainty of ± 0.002 ( = 10–5 G) in the most sensitive (± 8 ) LFM range, low sensor RMS noise level of 0.006 , and use of data compaction schemes to optimize the experiment information rate all combine to permit the study of a broad spectrum of phenomena during the mission. Objectives include the study of planetary fields at Jupiter, Saturn, and possibly Uranus; satellites of these planets; solar wind and satellite interactions with the planetary fields; and the large-scale structure and microscale characteristics of the interplanetary magnetic, field. The interstellar field may also be measured.  相似文献   
937.
A subsurface radar using a multi-frequency signal has been developed. It is designated for surveying building structures and works. The characteristic feature of this device is the possibility of obtaining sounding plane radio images featuring a high resolution attaining 1…2 cm. The main applications of this device includes the survey of building structures to reveal their heterogeneities and defects and the investigation of premises to detect bugging devices  相似文献   
938.
BARREL is a multiple-balloon investigation designed to study electron losses from Earth’s Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (~20 kg) stratospheric balloons will be successively launched to maintain an array of ~5 payloads spread across ~6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electrons as they collide with neutrals in the atmosphere, and a DC magnetometer to measure ULF-timescale variations of the magnetic field. BARREL will provide the first balloon measurements of relativistic electron precipitation while comprehensive in situ measurements of both plasma waves and energetic particles are available, and will characterize the spatial scale of precipitation at relativistic energies. All data and analysis software will be made freely available to the scientific community.  相似文献   
939.
940.
The objective of the University of Maryland ISTP theory project is the development of the analytical and computational tools, which, combined with the data collected by the space and ground-based ISTP sensors, will lead to the construction of the first causal and predictive global geospace model. To attain this objective a research project composed of four complementary parts is conducted. First the global interaction of the solar wind-magnetosphe re system is studied using three-dimensional MHD simulations. Appropriate results of these simulations are made available to other ISTP investigators through the Central Data Handling Facility (CDHF) in a format suitable for comparison with the observations from the ISTP spacecrafts and ground instruments. Second, simulations of local processes are performed using a variety of non-MHD codes (hybrid, particle and multifluid) to study critical magnetospheric boundary layers, such as the magnetopause and the magnetotail. Third, a strong analytic effort using recently developed methods of nonlinear dynamics is conducted, to provide a complementary semi-empirical understanding of the nonlinear response of the magnetosphere and its parts to the solar wind input. The fourth part will be conducted during and following the data retrieval and its objective is to utilize the data base in conjunction with the above models to produce the next generation of global and local magnetospheric models. Special emphasis is paid to the development of advanced visualization packages that allow for interactive real time comparison of the experimental and computational data. Examples of the computational tools and of the ongoing investigations are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号