首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6397篇
  免费   50篇
  国内免费   33篇
航空   2960篇
航天技术   2256篇
综合类   251篇
航天   1013篇
  2021年   51篇
  2018年   94篇
  2017年   85篇
  2016年   61篇
  2015年   53篇
  2014年   133篇
  2013年   171篇
  2012年   145篇
  2011年   244篇
  2010年   168篇
  2009年   253篇
  2008年   327篇
  2007年   183篇
  2006年   180篇
  2005年   189篇
  2004年   152篇
  2003年   195篇
  2002年   237篇
  2001年   248篇
  2000年   128篇
  1999年   170篇
  1998年   185篇
  1997年   156篇
  1996年   168篇
  1995年   194篇
  1994年   174篇
  1993年   105篇
  1992年   137篇
  1991年   67篇
  1990年   67篇
  1989年   124篇
  1988年   59篇
  1987年   52篇
  1986年   57篇
  1985年   190篇
  1984年   164篇
  1983年   122篇
  1982年   131篇
  1981年   189篇
  1980年   48篇
  1979年   41篇
  1978年   49篇
  1977年   45篇
  1976年   34篇
  1975年   54篇
  1974年   42篇
  1972年   51篇
  1971年   43篇
  1970年   36篇
  1969年   40篇
排序方式: 共有6480条查询结果,搜索用时 31 毫秒
331.
The objective of the Nephelometer Experient aboard the Probe of the Galileo mission is to explore the vertical structure and microphysical properties of the clouds and hazes in the atmosphere of Jupiter along the descent trajectory of the Probe (nominally from 0.1 to > 10 bars). The measurements, to be obtained at least every kilometer of the Probe descent, will provide the bases for inferences of mean particle sizes, particle number densities (and hence, opacities, mass densities, and columnar mass loading) and, for non-highly absorbing particles, for distinguishing between solid and liquid particles. These quantities, especially the location of the cloud bases, together with other quantities derived from this and other experiments aboard the Probe, will not only yield strong evidence for the composition of the particles, but, using thermochemical models, for species abundances as well. The measurements in the upper troposphere will provide ground truth data for correlation with remote sensing instruments aboard the Galileo Orbiter vehicle. The instrument is carefully designed and calibrated to measure the light scattering properties of the particulate clouds and hazes at scattering angles of 5.8°, 16°, 40°, 70°, and 178°. The measurement sensitivity and accuracy is such that useful estimates of mean particle radii in the range from about 0.2 to 20 can be inferred. The instrument will detect the presence of typical cloud particles with radii of about 1.0 , or larger, at concentrations of less than 1 cm3.Deceased.  相似文献   
332.
The Energetic Particles Investigation (EPI) instrument operates during the pre-entry phase of the Galileo Probe. The major science objective is to study the energetic particle population in the innermost regions of the Jovian magnetosphere — within 4 radii of the cloud tops — and into the upper atmosphere. To achieve these objectives the EPI instrument will make omnidirectional measurements of four different particle species — electrons, protons, alpha-particles, and heavy ions (Z > 2). Intensity profiles with a spatial resolution of about 0.02 Jupiter radii will be recorded. Three different energy range channels are allocated to both electrons and protons to provide a rough estimate of the spectral index of the energy spectra. In addition to the omnidirectional measurements, sectored data will be obtained for certain energy range electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted, circular silicon surfacebarrier detectors surrounded by a cylindrical tungsten shielding with a wall thickness of 4.86 g cm-2. The telescope axis is oriented normal to the spherical surface of the Probe's rear heat shield which is needed for heat protection of the scientific payload during the Probe's entry into the Jovian atmosphere. The material thickness of the heat shield determines the lower energy threshold of the particle species investigated during the Probe's pre-entry phase. The EPI instrument is combined with the Lightning and Radio Emission Detector (LRD) such that the EPI sensor is connected to the LRD/EPI electronic box. In this way, both instruments together only have one interface of the Probe's power, command, and data unit.  相似文献   
333.
CFAR data fusion center with inhomogeneous receivers   总被引:1,自引:0,他引:1  
Detection systems with distributed sensors and data fusion are increasingly used by surveillance systems. A system formed by N inhomogeneous constant false alarm rate (CFAR) detectors (cell-averaging (CA) and ordered statistic (OS) CFAR detectors) is studied. A recursive formulation of an algorithm that permits a fixed level of false alarms in the data fusion center is presented, to set the optimum individual threshold levels in the CFAR receivers and the optimum `K out of N' decision rule in order to maximize the total probability of detection. The algorithm also considers receivers of different quality or with different communication channel qualities connecting them with the fusion center. This procedure has been applied to several hypothetical networks with distributed CA-CFAR and OS-CFAR receivers and for Rayleigh targets and interference, and it was seen that in general the fusion decision OR rule is not always the best  相似文献   
334.
Improved strapdown coning algorithms   总被引:2,自引:0,他引:2  
Three improved algorithms for strapdown attitude computation utilizing accumulated gyro increments from the previous and current update are developed and evaluated analytically under classical coning motion. The error criterion of Miller is derived directly from the rotation vector concept. The accuracy of updating rotation vector estimation can be improved at least two orders of magnitude as compared with those of conventional algorithms. The proposed algorithm is equivalent to increasing the number of gyro samples used in the conventional method and it requires less computer loading  相似文献   
335.
336.
337.
Optimal speckle reduction in polarimetric SAR imagery   总被引:9,自引:0,他引:9  
Speckle is a major cause of degradation in synthetic aperture radar (SAR) imagery. With the availability of fully polarimetric SAR data, it is possible to use the three complex elements (HH, HV, VV) of the polarimetric scattering matrix to reduce speckle. The optimal method for combining the elements of the scattering matrix to minimize image speckle is derived, and the solution is shown to be a polarimetric whitening filter (PWF). A simulation of spatially correlated, K-distributed, fully polarimetric clutter is then used to compare the PWF with other, suboptimal speckle-reduction methods. Target detection performance of the PWF, span, and single-channel |HH|2 detectors is compared with that of the optimal polarimetric detector (OPD). A novel, constant-false-alarm-rate (CFAR) detector (the adaptive PWF) is as a simple alternative to the OPD for detecting targets in clutter. This algorithm estimates the polarization covariance of the clutter, uses the covariance to construct the minimum-speckle image, and then tests for the presence of a target. An exact theoretical analysis of the adaptive PWF is presented; the algorithm is shown to have detection performance comparable with that of the OPD  相似文献   
338.
339.
The proposed KAAD (knowledge-based automated air defense) system demonstrates a man-machine environment for airspace defense systems. When the unknown aircraft is hostile, a threat rating and response methods are generated by the system. It serves as a double-check decision-making system for a war control center. In addition to this application, the KAAD system can also be a useful tool as a training program for the war controller. The capabilities of the system are limited due to the shortage of knowledge resources. It requires communications among war controllers and air fighter pilots to organize a practical knowledge base. It is shown that the KAAD system can be combined with an automated ATC (air traffic control) system to become a practical system for air defense applications  相似文献   
340.
The Wave Experiment, F4, on the Swedish/German satelliteFreja, is designed to measure the electric wave fields up to 4 MHz, the magnetic wave fields up to 16 kHz and the plasma density and its relative variations up to 2 kHz. Six wave signals and four density probe signals can be measured simultaneously. The wave forms of all signals are transmitted to ground without any analysis onboard. The limited TM allocation does not allow continuous sampling of the wave signals, so normally the measurements are made in snapshots of various lengths dependent on sampling frequency, etc. Continuous sampling can be made for shorter time periods by using a 6 Mbyte memory as a buffer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号