首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   982篇
  免费   0篇
航空   363篇
航天技术   373篇
综合类   2篇
航天   244篇
  2022年   5篇
  2021年   22篇
  2019年   9篇
  2018年   30篇
  2017年   22篇
  2016年   14篇
  2015年   8篇
  2014年   36篇
  2013年   48篇
  2012年   41篇
  2011年   42篇
  2010年   34篇
  2009年   62篇
  2008年   73篇
  2007年   22篇
  2006年   21篇
  2005年   31篇
  2004年   22篇
  2003年   28篇
  2002年   20篇
  2001年   36篇
  2000年   21篇
  1999年   12篇
  1998年   27篇
  1997年   11篇
  1996年   21篇
  1995年   18篇
  1994年   26篇
  1993年   11篇
  1992年   16篇
  1991年   4篇
  1989年   14篇
  1988年   7篇
  1987年   9篇
  1986年   3篇
  1985年   27篇
  1984年   18篇
  1983年   10篇
  1982年   11篇
  1981年   16篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1976年   4篇
  1975年   6篇
  1974年   8篇
  1972年   8篇
  1968年   6篇
  1967年   5篇
  1966年   5篇
排序方式: 共有982条查询结果,搜索用时 15 毫秒
641.
Flat probes of the ZOND–ZARYAD instrument, which operated on the MIR orbital complex (OC), form a counterprobe (reference surface) configuration in which the alternating component of the net probe current is measured. There is no potential difference between the spacecraft (SC) body and the probes; that is, the probes are at the floating potential (FP). By measuring the alternating component of the probe current, one cannot estimate the FP value, but we can observe small-scale FP dynamics of a single probe in the OC near-surface region and estimate the fluctuations of currents flowing onto the SC. The alternating component of the current on the probes in the OC near-surface region varies in a wide range depending on ionospheric plasma parameters, the probe orientation with respect to the velocity vector, the magnetic field vector, and the direction to the Sun in the illuminated part of the orbit. In addition to the amplitude dynamics, the frequency dynamics of the alternating component of the current onto the probes is observed.  相似文献   
642.
643.
644.
We describe and analyse a model of three-dimensional time-varying reconnection in which the effect of surface waves is neglected. Reconnection is assumed to be caused by a localized decrease of the plasma conductivity inside the diffusion region. The localized dissipation gives rise to an electric field E*, which determines the reconnection rate. As a result, the current sheet decays into a system of large-amplitude MHD waves, which propagate along the current sheet and thereby induce perturbations in the surrounding medium. Our model is applied to the case of reconnection at the magnetopause, in particular to the signatures referred to as FTEs (flux transfer events).  相似文献   
645.
We investigated the spatio-temporal evolution of disturbed time post mid-night Equatorial Plasma Bubbles (EPBs) using Canadian Advanced Digital Ionosonde (CADI) located at dip equatorial station, Tirunelveli (8.73°N, 77.7°E, 0.23°N Dip. Lat.), an all-sky imager (ASI) observations at low latitude station Panhala (16.48°N, 74.6°E, 11.1°N Dip. Lat.) and Gadanki Ionospheric Radar Interferometer (GIRI) at Gadanki (13.5°N, 79.2°E; 6.5°N Dip. Lat.) which is situated at few degrees towards east and south of Panhala on 02–03 February 2017 night. During this night, IMF Bz showed its periodic variation starting from 16:00 UT to 23:00 UT accompanied by decrease in SYM-H to as low as ?35 nT indicating the onset of weak magnetic storm. The analyzed results suggested that cause of post-midnight EPBs could be due to manifestation of fluctuating eastward/westward electric field due to combined under-shielding/over-shielding Electric Fields and disturbance dynamo electric fields that led to rise and fall of the F-layer over dip equator. Interestingly, the EPBs over Panhala showed eastward motion initially that quickly reversed to westward later. Along with westward motion they also started growing until 21:30 UT. However, most of these EPBs disappeared with time except the one that started descending/shrinking towards southern side (i.e. towards equator). The rising and shrinking of EPBs is found to be fairly correlated with the equatorial vertical drifts. The westward drift of EPBs at Panhala and its anti-correlation with vertical drifts has been confirmed from CADI zonal/vertical drifts. Accordingly, the study also investigated the role of storm induced vertical Hall electric field as a possible cause for westward drifts and its anti-correlation with vertical drifts. However, GIRI observations do not show any significant westward drift on this night at Gadanki suggesting that there is a longitudinal gradient in the zonal drift of these EPBs. In addition to longitudinal drift reversal, the latitudinal gradient in zonal drifts also has been noticed. The present work highlights the role of storm induced disturbances in the generation and evolution of post-midnight EPBs which is believed to be triggered by weak magnetic disturbances in the deep low solar minimum.  相似文献   
646.
To investigate the vast area of Russia, a mobile scientific facility based in a railway carriage was developed. It is capable to perform continues measurements being coupled in a passenger train traveling along railroads. It was first equipped with a spectrometer for remote sensing of ozone and nitrogen dioxide in the atmosphere for the transcontinental observations into the chemistry of the atmosphere-4 expedition performed from February 18 to March 5, 1998. A twilight DOAS method, which was applied for retrieval of the nitrogen dioxide profiles basing on spectral measurements at the visible wavelengths (434–451 nm), is described in the paper. Main features of a new algorithm for retrieval of the ozone profile and total content using the differential structure of the UV spectrum (310–335 nm) are presented. The ozone and nitrogen dioxide contents are obtained and shortly validated against available alternative data.  相似文献   
647.
Diurnal, seasonal and latitudinal variations of Vertical Total Electron Content (VTEC) over the equatorial region of the African continent and a comparison with IRI-2007 derived TEC (IRI-TEC), using all three options (namely; NeQuick, IRI01-corr and IRI-2001), are presented in this paper. The variability and comparison are presented for 2009, a year of low solar activity, using data from thirteen Global Positioning System (GPS) receivers. VTEC values were grouped into four seasons namely March Equinox (February, March, April), June Solstice (May, June, July), September Equinox (August, September, October), and December Solstice (November, December, January). VTEC generally increases from 06h00 LT and reaches its maximum value at approximately 15h00–17h00 LT during all seasons and at all locations. The NeQuick and IRI01-corr options of the IRI model predict reasonably well the observed diurnal and seasonal variation patterns of VTEC values. However, the IRI-2001 option gave a relatively poor prediction when compared with the other options. The post-midnight and post-sunset deviations between modeled and observed VTEC could arise because NmF2 or the shape of the electron density profile, or both, are not well predicted by the model; hence some improvements are still required in order to obtain improved predictions of TEC over the equatorial region of the Africa sector.  相似文献   
648.
    
The International Rosetta Mission is set for a rendezvous with Comet 67 P/Churyumov-Gerasimenko in 2014. On its 10 year journey to the comet, the spacecraft will also perform a fly-by of the two asteroids Stein and Lutetia in 2008 and 2010, respectively. The mission goal is to study the origin of comets, the relationship between cometary and interstellar material and its implications with regard to the origin of the Solar System. Measurements will be performed that shed light into the development of cometary activity and the processes in the surface layer of the nucleus and the inner coma. The Micro-Imaging Dust Analysis System (MIDAS) instrument is an essential element of Rosetta’s scientific payload. It will provide 3D images and statistical parameters of pristine cometary particles in the nm-μm range from Comet 67P/Churyumov-Gerasimenko. According to cometary dust models and experience gained from the Giotto and Vega missions to 1P/Halley, there appears to be an abundance of particles in this size range, which also covers the building blocks of pristine interplanetary dust particles. The dust collector of MIDAS will point at the comet and collect particles drifting outwards from the nucleus surface. MIDAS is based on an Atomic Force Microscope (AFM), a type of scanning microprobe able to image small structures in 3D. AFM images provide morphological and statistical information on the dust population, including texture, shape, size and flux. Although the AFM uses proven laboratory technology, MIDAS is its first such application in space. This paper describes the scientific objectives and background, the technical implementation and the capabilities of MIDAS as they stand after the commissioning of the flight instrument, and the implications for cometary measurements.  相似文献   
649.
This paper describes the results of studying the helium component of the solar-wind ion-flux measurement by the BMSW instrument on the Spektr-R satellite with a time resolution of 3 s. In contrast to most previous works that presented values averaged over large (hourly average or daily average) intervals, we have shown that the relative helium-ion abundance in the solar wind experiences considerable (by a few percent and even 10%) variations on such short intervals as 10 seconds or even several seconds.  相似文献   
650.
    
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号