全文获取类型
收费全文 | 978篇 |
免费 | 0篇 |
专业分类
航空 | 363篇 |
航天技术 | 369篇 |
综合类 | 2篇 |
航天 | 244篇 |
出版年
2022年 | 5篇 |
2021年 | 22篇 |
2019年 | 9篇 |
2018年 | 30篇 |
2017年 | 22篇 |
2016年 | 14篇 |
2015年 | 8篇 |
2014年 | 35篇 |
2013年 | 47篇 |
2012年 | 41篇 |
2011年 | 42篇 |
2010年 | 34篇 |
2009年 | 60篇 |
2008年 | 72篇 |
2007年 | 22篇 |
2006年 | 21篇 |
2005年 | 31篇 |
2004年 | 22篇 |
2003年 | 28篇 |
2002年 | 20篇 |
2001年 | 36篇 |
2000年 | 21篇 |
1999年 | 12篇 |
1998年 | 27篇 |
1997年 | 11篇 |
1996年 | 21篇 |
1995年 | 18篇 |
1994年 | 26篇 |
1993年 | 11篇 |
1992年 | 16篇 |
1991年 | 4篇 |
1989年 | 14篇 |
1988年 | 7篇 |
1987年 | 9篇 |
1986年 | 3篇 |
1985年 | 28篇 |
1984年 | 18篇 |
1983年 | 10篇 |
1982年 | 11篇 |
1981年 | 16篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1978年 | 5篇 |
1976年 | 4篇 |
1975年 | 6篇 |
1974年 | 8篇 |
1972年 | 8篇 |
1968年 | 6篇 |
1967年 | 5篇 |
1966年 | 5篇 |
排序方式: 共有978条查询结果,搜索用时 0 毫秒
741.
We review electrical activity in blowing sand and dusty phenomena on Earth, Mars, the Moon, and asteroids. On Earth and Mars, blowing sand and dusty phenomena such as dust devils and dust storms are important geological processes and the primary sources of atmospheric dust. Large electric fields have been measured in terrestrial dusty phenomena and are predicted to occur on Mars. We review the charging mechanisms that produce these electric fields and discuss the implications of electrical activity to dust lifting and atmospheric chemistry. In addition, we review theoretical ideas about electric discharges on Mars. Finally, we discuss the evidence that electrostatics is responsible for dust transport on the Moon and asteroids. 相似文献
742.
An exact solution of the uncoupled three-dimensional thermoelasticity problem for a spherical dome (hangar) is constructed. Displacements and stresses in the structure are determined as two-fold series with respect to solid spherical harmonics and trigonometric functions. 相似文献
743.
Gandhi T. Mau-Tsuen Yang Kasturi R. Camps O. Coraor L. McCandless J. 《IEEE transactions on aerospace and electronic systems》2003,39(1):176-191
The National Aeronautics and Space Administration (NASA), along with members of the aircraft industry, recently developed technologies for a new supersonic aircraft. One of the technological areas considered for this aircraft is the use of video cameras and image-processing equipment to aid the pilot in detecting other aircraft in the sky. The detection techniques should provide high detection probability for obstacles that can vary from subpixel to a few pixels in size, while maintaining a low false alarm probability in the presence of noise and severe background clutter. Furthermore, the detection algorithms must be able to report such obstacles in a timely fashion, imposing severe constraints on their execution time. Approaches are described here to detect airborne obstacles on collision course and crossing trajectories in video images captured from an airborne aircraft. In both cases the approaches consist of an image-processing stage to identify possible obstacles followed by a tracking stage to distinguish between true obstacles and image clutter, based on their behavior. For collision course object detection, the image-processing stage uses morphological filter to remove large-sized clutter. To remove the remaining small-sized clutter, differences in the behavior of image translation and expansion of the corresponding features is used in the tracking stage. For crossing object detection, the image-processing stage uses low-stop filter and image differencing to separate stationary background clutter. The remaining clutter is removed in the tracking stage by assuming that the genuine object has a large signal strength, as well as a significant and consistent motion over a number of frames. The crossing object detection algorithm was implemented on a pipelined architecture from DataCube and runs in real time. Both algorithms have been successfully tested on flight tests conducted by NASA. 相似文献
744.
B. Cecconi X. Bonnin S. Hoang M. Maksimovic S. D. Bale J.-L. Bougeret K. Goetz A. Lecacheux M. J. Reiner H. O. Rucker P. Zarka 《Space Science Reviews》2008,136(1-4):549-563
The STEREO/Waves experiment is dedicated to the study of inner heliosphere radio emissions. This experiment is composed of a set of two identical receivers placed on each of the two STEREO spacecraft. The STEREO/Waves receivers have instantaneous Goniopolarimetric (GP) capabilities (also referred to as direction-finding capabilities). This means that it is possible to retrieve the direction of arrival of an incoming electromagnetic radio wave, its flux and its polarization. We review the state of the art of GP-capable radio receivers and available GP techniques. We then present the GP capabilities of the STEREO/Waves experiment. We finally show some GP results on solar Type III radio bursts, using data recorded with the Cassini/RPWS/HFR, which are very similar to the STEREO/Waves data. 相似文献
745.
V. V. Izmodenov Y. G. Malama M. S. Ruderman S. V. Chalov D. B. Alexashov O. A. Katushkina E. A. Provornikova 《Space Science Reviews》2009,146(1-4):329-351
Heliospheric energetic neutral atoms (ENAs) that will be measured by the Interstellar Boundary Explorer (IBEX) originate from the heliosheath. The heliosheath is formed as a result of the interaction of the solar wind (SW) with the circum-heliospheric interstellar medium (CHISM). The expected fluxes of ENAs are strongly dependent on the nature of this interaction. In turn, the interaction of the solar wind with the local interstellar cloud has a complex and multi-component nature. Detailed theoretical modeling of the interaction between the SW and the local interstellar medium is required to understand the physics of the heliosheath and to predict and explain the heliospheric ENAs. This paper summarizes current state-of-art kinetic-gasdynamic models of the SW/CHISM interaction. We shall restrict our discussion to the kinetic-gasdynamic and kinetic-magnetohydrodynamic (MHD) models developed by the Moscow group. This paper summarizes briefly the main results of the first self-consistent, two-component, kinetic-gasdynamic model by Baranov and Malama (J. Geophys. Res. 98:15157–15163, 1993), presents new results obtained from the 3D kinetic-MHD model by Izmodenov et al. (Astron. Astrophys. 437:L35–L38, 2005a), describes the basic formulation and results of the model by Malama et al. (Astron. Astrophys. 445:693–701, 2006) as well as reports current developments in the model. This self-consistent model considers pickup protons as a separate non-equilibrium component. Then we discuss a stochastic acceleration model for pickup protons in the supersonic solar wind and in the heliosheath. We also present the expected heliospheric ENA fluxes obtained in the framework of the models. 相似文献
746.
L. Fletcher B. R. Dennis H. S. Hudson S. Krucker K. Phillips A. Veronig M. Battaglia L. Bone A. Caspi Q. Chen P. Gallagher P. T. Grigis H. Ji W. Liu R. O. Milligan M. Temmer 《Space Science Reviews》2011,159(1-4):19-106
We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations. 相似文献
747.
Rabideau D.J. Steinhardt A.O. 《IEEE transactions on aerospace and electronic systems》1999,35(3):879-891
Adaptive array algorithms based on sample matrix inversion (SMI) require the availability of a secondary data set to “train” the adaptive filter. Numerous data-independent rules have been proposed for selecting this training data. However, such rules often perform poorly in inhomogeneous environments. We present data-adaptive methodologies for selecting the training data. The techniques, called “Power Selected Training” and “Power Selected Deemphasis”, use measurements of the interference environment to select training data. This work describes these algorithms and their performance on recorded radar data 相似文献
748.
A mathematical model of complex vibrations for the cantilever Bernoulli-Euler beam in the XOZ plane constructed by the finite difference and finite element methods and the fourth-order Runge-Kutta method is presented. We determined the critical value of the damping coefficient ɛ = 0.28, at which the system changes from the dissipative state to conservative one, using the Morlet wavelet. The results of analyzing the frequency characteristics of the system are presented. 相似文献
749.
R. W. Eastes W. E. McClintock A. G. Burns D. N. Anderson L. Andersson M. Codrescu J. T. Correira R. E. Daniell S. L. England J. S. Evans J. Harvey A. Krywonos J. D. Lumpe A. D. Richmond D. W. Rusch O. Siegmund S. C. Solomon D. J. Strickland T. N. Woods A. Aksnes S. A. Budzien K. F. Dymond F. G. Eparvier C. R. Martinis J. Oberheide 《Space Science Reviews》2017,212(1-2):383-408
The Earth’s thermosphere and ionosphere constitute a dynamic system that varies daily in response to energy inputs from above and from below. This system can exhibit a significant response within an hour to changes in those inputs, as plasma and fluid processes compete to control its temperature, composition, and structure. Within this system, short wavelength solar radiation and charged particles from the magnetosphere deposit energy, and waves propagating from the lower atmosphere dissipate. Understanding the global-scale response of the thermosphere-ionosphere (T-I) system to these drivers is essential to advancing our physical understanding of coupling between the space environment and the Earth’s atmosphere. Previous missions have successfully determined how the “climate” of the T-I system responds. The Global-scale Observations of the Limb and Disk (GOLD) mission will determine how the “weather” of the T-I responds, taking the next step in understanding the coupling between the space environment and the Earth’s atmosphere. Operating in geostationary orbit, the GOLD imaging spectrograph will measure the Earth’s emissions from 132 to 162 nm. These measurements will be used image two critical variables—thermospheric temperature and composition, near 160 km—on the dayside disk at half-hour time scales. At night they will be used to image the evolution of the low latitude ionosphere in the same regions that were observed earlier during the day. Due to the geostationary orbit being used the mission observes the same hemisphere repeatedly, allowing the unambiguous separation of spatial and temporal variability over the Americas. 相似文献
750.
A.N. Petrov O.R. GrigoryanM.I. Panasyuk 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1269-1273
The results of proton energy (tens keV – several MeV) spectrum measurements near geomagnetic equator (L < 1.15) at low altitudes (<1000 km) are presented. We used data of experiments onboard ACTIVE, SAMPEX, NOAA TIROS-N satellites and SPRUT-VI (MIR station) and cover a time range of about 30 years (including previous measurements). It was found that the kappa-distribution function fits the experimental spectrum with the best correlation coefficient. A comparison of energy spectra of near-equatorial protons and ring-current protons was made. Using the estimation of the life time of near-equatorial protons we explain the difference in spectral indices of radiation belt and near-equatorial proton formation. We conclude that the ring current is the main source of the near-equatorial protons. 相似文献