首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3677篇
  免费   9篇
  国内免费   9篇
航空   1608篇
航天技术   1476篇
综合类   16篇
航天   595篇
  2021年   46篇
  2019年   36篇
  2018年   86篇
  2017年   46篇
  2016年   50篇
  2015年   21篇
  2014年   91篇
  2013年   117篇
  2012年   106篇
  2011年   125篇
  2010年   96篇
  2009年   171篇
  2008年   234篇
  2007年   103篇
  2006年   88篇
  2005年   91篇
  2004年   91篇
  2003年   116篇
  2002年   82篇
  2001年   123篇
  2000年   71篇
  1999年   74篇
  1998年   104篇
  1997年   61篇
  1996年   77篇
  1995年   100篇
  1994年   111篇
  1993年   60篇
  1992年   84篇
  1991年   39篇
  1990年   31篇
  1989年   79篇
  1988年   31篇
  1987年   38篇
  1986年   31篇
  1985年   120篇
  1984年   89篇
  1983年   74篇
  1982年   94篇
  1981年   107篇
  1980年   34篇
  1979年   44篇
  1978年   30篇
  1977年   18篇
  1976年   16篇
  1975年   18篇
  1974年   21篇
  1973年   17篇
  1972年   22篇
  1970年   13篇
排序方式: 共有3695条查询结果,搜索用时 15 毫秒
71.
We examined some 75 observations from the low-altitude Earth orbiting DMSP, Ørsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation (“particle cusp”) and intense small-scale magnetic field variations (“current cusp”), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms (“statistical cusp”).  相似文献   
72.
Cometary dust trails were first observed by IRAS; they are widely known to be the origins of meteoric showers. A new window has been opened for the study of dust trails, using ground-based observations. We succeeded in obtaining direct images of the 22P/Kopff dust trail with the Kiso 1.05-m Schmidt telescope. Following this initial success, we have continued to perform a dust trail survey at Kiso. As a result of this survey, we have detected dust trails along the orbit of six periodic comets, between February 2002 and March 2004. The optical depth of these dust trails are 10−9 to 10−8, which is consistent with IRAS measurements. In this paper, we describe the observations and data reduction procedures, and report the brief result obtained between February 2002 and March 2004.  相似文献   
73.
Close to the current solar activity minimum, two large solar cosmic ray ground-level enhancements (GLE) were recorded by the worldwide network of neutron monitors (NM). The enormous GLE on 20 January 2005 is the largest increase observed since the famous GLE in 1956, and the solar cosmic-ray event recorded on 13 December 2006 is among the largest in solar cycle 23. From the recordings of the NMs during the two GLEs, we determined the characteristics of the solar particle flux near Earth.  相似文献   
74.
75.
76.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.  相似文献   
77.
78.
This study presents several observations of the Cluster spacecraft on September 24, 2003 around 15:10 UT, which show necessary prerequisites and consequences for the formation of the so-called modified-two-stream instability (MTSI). Theoretical studies suggest that the plasma is MTSI unstable if (1) a relative drift of electrons and ions is present, which exceeds the Alfvèn speed, and (2) this relative drift or current is in the cross-field direction. As consequences of the formation of a MTSI one expects to observe (1) a field-aligned electron beam, (2) heating of the plasma, and (3) an enhancement in the B-wave spectrum at frequencies in the range of the lower-hybrid-frequency (LHF). In this study we use prime parameter data of the CIS and PEACE instruments onboard the Cluster spacecraft to verify the drift velocities of ions and electrons, FGM data to calculate the expected LHF and Alfvèn velocity, and the direction of the current. The B-wave spectrum is recorded by the STAFF instrument of Cluster. Finally, a field aligned beam of electrons is observed by 3D measurements of the IES instrument of the RAPID unit. Observations are verified using a theoretical model showing the build-up of a MTSI under the given circumstances.  相似文献   
79.
The 22 min long decimetric type IV radio event observed during the decay phase of the June 6, 2000 flare simultaneously by the Brazilian Solar Spectroscope (BSS) and the Ond?ejov radiospectrograph in frequency range 1200–4500 MHz has been analyzed. We have found that the characteristic periods of about 60 s belong to the long-period spectral component of the fast wave trains with a tadpole pattern in their wavelet power spectra. We have detected these trains in the whole frequency range 1200–4500 MHz. The behavior of individual wave trains at lower frequencies is different from that at higher frequencies. These individual wave trains have some common as well as different properties. In this paper, we focus on two examples of wave trains in a loop segment and the main statistical parameters in their wavelet power and global spectra are studied and discussed.  相似文献   
80.
Thin Current Sheets (TCS) are regularly formed prior to substorm breakup, even in the near-Earth plasma sheet, as close as the geostationary orbit. A self-consistent kinetic theory describing the response of the plasma sheet to an electromagnetic perturbation is given. This perturbation corresponds to an external forcing, for instance caused by the solar wind (not an internal instability). The equilibrium of the configuration of this TCS in the presence of a time varying perturbation is shown to produce a strong parallel thermal anisotropy (T T) of energetic electrons and ions (E>50keV) as well as an enhanced diamagnetic current carried by low energy ions (E<50keV). Both currents tend to enhance the confinement of this current sheet near the magnetic equator. These results are compared with data gathered by GEOS-2 at the geostationary orbit, where the magnetic signatures of TCS, and parallel anisotropics are regularly observed prior to breakup. By ensuring quasi-neutrality everywhere we find, when low frequency electromagnetic perturbations are applied, that although the magnetic field line remains an equipotential to the lowest order in Te/Ti, a field-aligned potential drop exists to the next order in (Te/Ti). Thus the development of a TCS implies the formation of a field-aligned potential drop ( few hundred volts) to ensure the quasi-neutrality everywhere. For an earthward directed pressure gradient, a field-aligned electric field, directed towards the ionosphere, is obtained, on the western edge of the perturbation (i.e. western edge of the current sheet). Thus field aligned beams of electrons are expected to flow towards the equatorial region on the western edge of the current sheet. We study the stability of these electron beams and show that they are unstable to “High Frequency” (HF) waves. These “HF” waves are regularly observed at frequencies of the order of the proton gyrofrequency (fH+) just before, or at breakup. The amplitude of these HF waves is so large that they can produce a strong pitch-angle diffusion of energetic ions and a spatial diffusion that leads to a reduction of the diamagnetic current. The signature of a fast ion diffusion is indeed regularly observed during the early breakup; it coincides with the sudden development of large amplitude transient fluctuations, ballooning modes, observed at much lower frequencies (fH+). These results suggest that the HF waves, generated by field-aligned electron beams, provide the dissipation which is necessary to destabilize low frequency (ballooning) modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号