全文获取类型
收费全文 | 974篇 |
免费 | 2篇 |
国内免费 | 1篇 |
专业分类
航空 | 362篇 |
航天技术 | 369篇 |
综合类 | 2篇 |
航天 | 244篇 |
出版年
2022年 | 5篇 |
2021年 | 22篇 |
2019年 | 9篇 |
2018年 | 30篇 |
2017年 | 22篇 |
2016年 | 14篇 |
2015年 | 8篇 |
2014年 | 35篇 |
2013年 | 47篇 |
2012年 | 41篇 |
2011年 | 42篇 |
2010年 | 34篇 |
2009年 | 60篇 |
2008年 | 72篇 |
2007年 | 22篇 |
2006年 | 21篇 |
2005年 | 31篇 |
2004年 | 22篇 |
2003年 | 28篇 |
2002年 | 20篇 |
2001年 | 36篇 |
2000年 | 21篇 |
1999年 | 12篇 |
1998年 | 27篇 |
1997年 | 11篇 |
1996年 | 21篇 |
1995年 | 18篇 |
1994年 | 26篇 |
1993年 | 11篇 |
1992年 | 16篇 |
1991年 | 4篇 |
1989年 | 14篇 |
1988年 | 7篇 |
1987年 | 9篇 |
1986年 | 3篇 |
1985年 | 27篇 |
1984年 | 18篇 |
1983年 | 10篇 |
1982年 | 11篇 |
1981年 | 16篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1978年 | 5篇 |
1976年 | 4篇 |
1975年 | 6篇 |
1974年 | 8篇 |
1972年 | 8篇 |
1968年 | 6篇 |
1967年 | 5篇 |
1966年 | 5篇 |
排序方式: 共有977条查询结果,搜索用时 15 毫秒
31.
R. Srama T. J. Ahrens N. Altobelli S. Auer J. G. Bradley M. Burton V. V. Dikarev T. Economou H. Fechtig M. Görlich M. Grande A. Graps E. Grün O. Havnes S. Helfert M. Horanyi E. Igenbergs E. K. Jessberger T. V. Johnson S. Kempf A. V. Krivov H. Krüger A. Mocker-Ahlreep G. Moragas-Klostermeyer P. Lamy M. Landgraf D. Linkert G. Linkert F. Lura J. A. M. McDonnell D. Möhlmann G. E. Morfill M. Müller M. Roy G. Schäfer G. Schlotzhauer G. H. Schwehm F. Spahn M. Stübig J. Svestka V. Tschernjawski A. J. Tuzzolino R. Wäsch H. A. Zook 《Space Science Reviews》2004,114(1-4):465-518
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date. 相似文献
32.
On going flights of Foton satellites allow to carry out research in the following domains: effect of space flight and outer space factors such as microgravity, artificial gravity and space radiation on physical processes and biological organisms. Experts from many Russian and foreign scientific institutions participated in the research. Over a period of time from 1973 to 1997 there were launched 11 BION satellites designed by the Central Specialized Design Bureau for carrying out fundamental and applied research in the field of space biology, medicine, radio physics and radiobiology with participation of specialists from the foreign countries.The goal of the present investigation was in developing a numerical simulator aimed at determining gas concentration and temperature fields established inside the scientific module of the spacecraft “Bion-M” and to perform optimization studies, which could meet strong requirements for air quality and temperature range allowable for operation of different biological experiments. 相似文献
33.
O. Koudelka G. Egger B. Josseck N. Deschamp C. Cordell Grant D. Foisy R. Zee W. Weiss R. Kuschnig A. Scholtz W. Keim 《Acta Astronautica》2009,64(11-12):1144-1149
A nanosatellite to investigate the brightness oscillations of massive luminous stars by differential photometry is currently developed by a Canadian/Austrian team within the BRITE (Bright Target Explorer) project. The first Austrian satellite funded by the Austrian Space Program, called TUGSAT-1/BRITE-Austria, builds on the space heritage of the most successful Canadian CanX-2 and MOST missions. The satellite makes use of recent advances in miniaturized attitude determination and control systems. Precision three-axis stabilization by small reaction wheels and a star tracker provides the necessary accuracy for the photometer telescope to the arcminute level. This will provide to the astronomers photometric data of the most massive stars with unprecedented precision; data which cannot be obtained from the ground due to limitations imposed by the terrestrial atmosphere.The paper describes the spacecraft characteristics and the ground infrastructure being established in support of the BRITE mission which will consist of a constellation of up to four nearly identical satellites allowing to carry out long-term observation of stars (magnitude +3.5) not only with respect to brightness variations, but also in different spectrum ranges. 相似文献
34.
R.M.T. Hoofs D. Titov H. Svedhem D. Koschny O. Witasse I. Tanco 《Acta Astronautica》2009,65(7-8):987-1000
The Venus Express mission is the European Space Agency's (ESA) first spacecraft at Venus. It was launched in November 2005 by a Soyuz–Fregat launcher and arrived at Venus in April 2006. The mission covers a broad range of scientific goals including physics, chemistry, dynamics and structure of the atmosphere as well as atmospheric interaction with the surface and several aspects of the surface itself. Furthermore, it investigates the plasma environment and interaction of the solar wind with the atmosphere and escape processes.One month after the arrival at Venus the Venus Express spacecraft started routine science operations. Since then Venus Express has been observing Venus every day for more than one year continuously making new discoveries.In order to ensure that all the science objectives are fulfilled the Venus Express Science Operations Centre (VSOC) has the task of coordinating and implementing the science operations for the mission. During the first year of Venus observations the VSOC and the experiment teams gained a lot of experience in how to make best use of the observation conditions and payload capabilities. While operating the spacecraft in orbit we also acquired more knowledge on the technical constraints and more insight in the science observations and their results.As the nominal mission is coming to an end, the extended mission will start from October 2007. The Extended Science Mission Plan was developed taking into account the lessons learned. At the same time new observations were added along with specific fine-tuned observations in order to complete the science objectives of the mission.This paper will describe how the previous observations influence the current requirements for the observations around Venus today and how they influence the observations in the mission extension. Also it will give an overview of the Extended Science Mission Plan and its challenges for the future observations. 相似文献
35.
Spatial structure of the magnetosheath of the Earth was studied under the conditions when no sharp (more than 40° during 5 min) changes in the interplanetary magnetic field direction were observed. On the basis of 24 flights of the Interball-1 satellite through the magnetosheath, it is found that three regions differing from each other by parameters of the field and plasma can be observed in the magnetosheath under the above-indicated conditions. These regions also differ from the solar wind region before front of the Earth’s magnetospheric bow shock. Empirical distributions of parameters were studied in each region. Taking into account the influence of the interplanetary magnetic field direction on the processes in the magnetosheath, the cases of quasi-perpendicular and quasi-parallel shock waves were considered separately. The study showed that the distribution of parameters in the selected regions (in the solar wind before front of the bow shock, in the magnetosheath behind the bow shock (post-shock), in the region of the magnetosheath with minimal fluctuations in the field, and in the inner magnetosheath) differ from each other at any interplanetary magnetic field direction. 相似文献
36.
A. V. Tavrov O. I. Korablev A. V. Rodin I. I. Vinogradov A. Yu. Trokhimovsky A. Yu. Ivanov L. V. Ksanfomaliti D. A. Orlov 《Cosmic Research》2011,49(2):99-109
In order to observe exoplanets we propose a space-based achromatic stellar coronagraph combined with a 0.8–1.5 m telescope. We develop an achromatic common path interferometer for observing an exoplanet (a faint off-axis source) on the background of a hoste star (bright axial source). An image of the star and its copy acquire an achromatic phase shift by 180° and interfere in antiphase. The achromatic phase shift is caused by geometric phase in the scheme of a three-dimensional interferometer. The interference process divides spatially the dark and light fields of the star image redirecting them to the opposite sides of a beam splitter. The interference process does not weaken the image of a planet, with equal intensities it is redirected to both sides of a beam splitter. The suggested scheme of common path interferometer ensures mechanical stability. The background signal is experimentally demonstrated to be reduced by six orders of magnitude. 相似文献
37.
The paper describes the first results of all-sky polarization measurements of the twilight background started in central Russia in the very beginning of summer 2011. Time-frequency data of the sky intensity and polarization over a wide range of sky point zenith distances are used to separate single and multiple scattering and construct the altitude dependence of the scattering coefficient and polarization in the mesosphere (altitudes from 60 to 90 km) at different angles. The undisturbed structure of the mesosphere without noticeable aerosol stratification on observation days makes it possible to estimate the temperature of the atmosphere at these altitudes. 相似文献
38.
Y. I. Yermolaev I. G. Lodkina N. S. Nikolaeva M. Y. Yermolaev M. O. Riazantseva 《Cosmic Research》2017,55(3):178-189
This paper discusses the errors in analyzing solar-terrestrial relationships, which result from either disregarding the types of interplanetary drivers in studying the magnetosphere response on their effect or from the incorrect identification of the type of these drivers. In particular, it has been shown that the absence of selection between the Sheath and ICME (the study of so-called CME-induced storms, i.e., magnetic storms generated by CME) leads to errors in the studies of interplanetary conditions of magnetic storm generation, because the statistical analysis has shown that, in the Sheath + ICME sequences, the largest number of storm onsets fell on the Sheath, and the largest number of storms maxima fell at the end of the Sheath and the beginning of the ICME. That is, the situation is observed most frequently when at least the larger part of the main phase of storm generation falls on the Sheath and, in reality, Sheath-induced storms are observed. In addition, we consider several cases in which magnetic storms were generated by corotating interaction regions, whereas the authors attribute them to CME. 相似文献
39.
V.?V.?Bogomolov M.?I.?Panasyuk S.?I.?SvertilovEmail author A.?V.?Bogomolov G.?K.?Garipov A.?F.?Iyudin P.?A.?Klimov S.?I.?Klimov T.?M.?Mishieva P.?Yu.?Minaev V.?S.?Morozenko O.?V.?Morozov A.?S.?Posanenko A.?V.?Prokhorov H.?Rotkel 《Cosmic Research》2017,55(3):159-168
The RELEС scientific payload of the Vernov satellite launched on July 8, 2014 includes the DRGE spectrometer of gamma-rays and electrons. This instrument comprises a set of scintillator phoswich-detectors, including four identical X-ray and gamma-ray detector with an energy range of 10 kev to 3 MeV with a total area of ~500 cm2 directed to the atmosphere, as well as an electron spectrometer containing three mutually orthogonal detector units with a geometric factor of ~2 cm2 sr. The aim of a space experiment with the DRGE instrument is the study of fast phenomena, in particular Terrestrial gamma-ray flashes (TGF) and magnetospheric electron precipitation. In this regard, the instrument provides the transmission of both monitoring data with a time resolution of 1 s, and data in the event-by-event mode, with a recording of the time of detection of each gamma quantum or electron to an accuracy of ~15 μs. This makes it possible to not only conduct a detailed analysis of the variability in the gamma-ray range, but also compare the time profiles with the results of measurements with other RELEC instruments (the detector of optical and ultraviolet flares, radio-frequency and low-frequency analyzers of electromagnetic field parameters), as well as with the data of ground-based facility for thunderstorm activity. This paper presents the first catalog of Terrestrial gamma-ray flashes. The criterion for selecting flashes required in order to detect no less than 5 hard quanta in 1 ms by at least two independent detectors. The TGFs included in the catalog have a typical duration of ~400 μs, during which 10–40 gamma-ray quanta were detected. The time profiles, spectral parameters, and geographic position, as well as a result of a comparison with the output data of other Vernov instruments, are presented for each of candidates. The candidate for Terrestrial gamma-ray flashes detected in the near-polar region over Antarctica is discussed. 相似文献
40.
The transport characteristics of macroparticles, charged by the solar radiation under microgravity conditions, were investigated by analyzing the videorecords of experiments carried out onboard the Mirorbital station. The temperature, distributions of velocities, charge, friction coefficient, and diffusion coefficient were obtained for bronze particles. 相似文献