首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   978篇
  免费   2篇
  国内免费   1篇
航空   365篇
航天技术   369篇
综合类   2篇
航天   245篇
  2022年   5篇
  2021年   22篇
  2019年   9篇
  2018年   30篇
  2017年   25篇
  2016年   14篇
  2015年   8篇
  2014年   35篇
  2013年   47篇
  2012年   41篇
  2011年   42篇
  2010年   34篇
  2009年   60篇
  2008年   73篇
  2007年   22篇
  2006年   21篇
  2005年   31篇
  2004年   22篇
  2003年   28篇
  2002年   20篇
  2001年   36篇
  2000年   21篇
  1999年   12篇
  1998年   27篇
  1997年   11篇
  1996年   22篇
  1995年   18篇
  1994年   26篇
  1993年   11篇
  1992年   16篇
  1991年   4篇
  1989年   14篇
  1988年   7篇
  1987年   9篇
  1986年   3篇
  1985年   26篇
  1984年   18篇
  1983年   10篇
  1982年   11篇
  1981年   16篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1976年   4篇
  1975年   6篇
  1974年   8篇
  1972年   8篇
  1968年   6篇
  1967年   5篇
  1966年   5篇
排序方式: 共有981条查询结果,搜索用时 15 毫秒
911.
The development engineering involved in large scale systems is but one of many problems included in acquisition of these systems. The purpose of this paper is to explore some of the engineering problems encountered in the development of the Strategic Air Command and Control System 465L and to indicate how the interaction between the technical problems and the nontechnical problems affects the final engineering decisions. In this paper we will indicate the basic requirements for the system and show how the system was configured to meet these requirements. The deficiencies uncovered in the design and first cut solutions to the problems and the compromises which were necessary to implement the system will also be discussed. Illustrative examples will be used to show how the design evolved into the final system configuration which is now in use.  相似文献   
912.
The history, current status and future prospects of water recovery at space stations are discussed. Due to energy, space and mass limitations physical/chemical processes have been used and will be used in water recovery systems of space stations in the near future. Based on the experience in operation of Russian space stations Salut, Mir and International space station (ISS) the systems for water recovery from humidity condensate and urine are described. A perspective physical/chemical system for water supply will be composed of an integrated system for water recovery from humidity condensate, green house condensate, water from carbon dioxide reduction system and condensate from urine system; a system for water reclamation from urine; hygiene water processing system and a water storage system. Innovative processes and new water recovery systems intended for Lunar and Mars missions have to be tested on the international space station.  相似文献   
913.
(MUSCAT) is a high value computation tool for analyzing spacecraft–plasma interaction, whose typical example is charging–arcing issue, corresponding to spacecrafts in LEO, GEO and PEO. JAXA and Kyushu Institute of Technology (KIT) started the development as a joint project in November 2004 and the final version of MUSCAT was released in March 2007. The final version includes many important features to simulate spacecraft–plasma interaction and the features can be separated into four parts. The first part is its GUI named “Vineyard”. By using Vineyard, MUSCAT users can build a satellite model including not only its geometry but also material properties of the surface. As for the second part, MUSCAT includes many kinds of effects derived from space plasma environment as well as electrical functions of spacecraft. For the third part, MUSCAT can work on parallel workstation with multi-CPU. The last feature is that the computation result by MUSCAT was thoroughly validated by experiments in plasma chamber. The numerical result shows very good agreement with the code validation experiment. We also conducted trial computation of charging analysis on Greenhouse gases Observing Satellite (GOSAT) with MUSCAT. One purpose of the computation was prediction of charging status of GOSAT for the real satellite design in combination with the ground test. The other is performance assessment of MUSCAT. After the joint project, expansion and maintenance of MUSCAT will be carried out by “MUSCAT Space Engineering Ltd” which is a new enterprise made of the development team. In future we will try to conduct MUSCAT computation for various spacecrafts and also try to add useful function such as 3D CAD compatibility.  相似文献   
914.
The CAVORT analog radar signal processor for matched filtering of coherent pulse trains from targets displaying significant radial acceleration is described. CAVORT employs a scanning technique to search repeatedly through trial pairs of values for Doppler and Doppler rate. When a target appears, it is detected, and the best-fitting pair of values determined. The principle of operation is illustrated, using photographs of waveforms generated by the equipment. The resuilts of satellite observations are included. It is demonstrated that the experimental CAVORT which integrates half-second segments of signal gives satisfactory estimates of acceleration.  相似文献   
915.
Particle acceleration and transport at an oblique CME-driven shock   总被引:1,自引:0,他引:1  
In gradual solar energetic particle (SEP) events, protons and heavy ions are often accelerated to >100 MeV/nucleon at a CME-driven shock. In this work, we study particle acceleration at an oblique shock by extending our earlier particle acceleration and transport in heliosphere (PATH) code to include shocks with arbitrary θBN, where θBN is the angle between the upstream magnetic field and the shock normal. Instantaneous particle spectra at the shock front are obtained by solving the transport equation using the total diffusion coefficient κ, which is a function of the parallel diffusion coefficient κ and the perpendicular diffusion coefficient κ. In computing κ and κ, we use analytic expressions derived previously. The particle maximum energy at the shock front as a function of time, the time intensity profiles and particle spectra at 1 AU for five θBN’s are calculated for an example shock.  相似文献   
916.
High energy density, lithium secondary cells are very attractive for use in many future military applications. However, a number of technical challenges remain. Specifically, the development and qualification of a system capable of withstanding the harsh environmental conditions encountered during normal and abnormal zones of operation. This paper focuses on the environmental extremes that the Eagle-Picher lithium-ion system has tested to date. Emphasis is placed on low temperature performance, high temperature performance, power capability, and cycle life at these extremes. Other areas including safety and environmental issues have also been investigated  相似文献   
917.
As part of the GENEX (Gene Expression) spaceflight experiment, protocols were developed to optimize the inflight germination and subsequent growth of 192 soybean (Glycine max cv McCall) seeds during STS-87. We describe a method which provided uniform growth and development of etiolated seedlings while eliminating root and shoot restrictions for short-term (4-7 day) experiments. Final seedling growth morphologies and the gaseous CO2 and ethylene levels present both on the last day in space and at the time of recovery within the spaceflight and ground control BRIC-60 canisters are presented.  相似文献   
918.
919.
Gloeckler  G.  Cain  J.  Ipavich  F.M.  Tums  E.O.  Bedini  P.  Fisk  L.A.  Zurbuchen  T.H.  Bochsler  P.  Fischer  J.  Wimmer-Schweingruber  R.F.  Geiss  J.  Kallenbach  R. 《Space Science Reviews》1998,86(1-4):497-539
The Solar Wind Ion Composition Spectrometer (SWICS) and the Solar Wind Ions Mass Spectrometer (SWIMS) on ACE are instruments optimized for measurements of the chemical and isotopic composition of solar and interstellar matter. SWICS determines uniquely the chemical and ionic-charge composition of the solar wind, the thermal and mean speeds of all major solar wind ions from H through Fe at all solar wind speeds above 300 km s−1 (protons) and 170 km s−1 (Fe+16), and resolves H and He isotopes of both solar and interstellar sources. SWICS will measure the distribution functions of both the interstellar cloud and dust cloud pickup ions up to energies of 100 keV e−1. SWIMS will measure the chemical, isotopic and charge state composition of the solar wind for every element between He and Ni. Each of the two instruments uses electrostatic analysis followed by a time-of-flight and, as required, an energy measurement. The observations made with SWICS and SWIMS will make valuable contributions to the ISTP objectives by providing information regarding the composition and energy distribution of matter entering the magnetosphere. In addition, SWICS and SWIMS results will have an impact on many areas of solar and heliospheric physics, in particular providing important and unique information on: (i) conditions and processes in the region of the corona where the solar wind is accelerated; (ii) the location of the source regions of the solar wind in the corona; (iii) coronal heating processes; (iv) the extent and causes of variations in the composition of the solar atmosphere; (v) plasma processes in the solar wind; (vi) the acceleration of particles in the solar wind; (vii) the physics of the pickup process of interstellar He in the solar wind; and (viii) the spatial distribution and characteristics of sources of neutral matter in the inner heliosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
920.
We readily convince ourselves that most achievements can be credited to the construction of powerful jet engines, which enable a spaceship to escape gravity. The principle of jet propulsion seems to work perfectly; jet engines can accelerate a rocket up to an incredible speed of 11 km/sec. Looks like there is nothing left to desire. However, from the physical point of view, 11 km/sec is not such a large value compared, for instance, to the speed of light. Would it be possible to attain half of that speed using gas jets? Unfortunately, the answer is no. Nevertheless, that is not the end of the story. The purpose of this article is to show that it is still possible to use the same principle to remove limitations on attainable speed if instead of gas jets, we employ ultrafast electron beams. The basic idea of our construction was inspired by the paper by H. Morgan (ibid., vol. 13, pp. 5-10, 1998). In that article he experimentally refuted the common premise that nothing can go faster than light and gave some theoretical arguments supporting his experimental data. Although the nature and underlying principles of the Morgan phenomenon are yet to be understood, we can already start thinking of its practical applications  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号