首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   0篇
  国内免费   1篇
航空   132篇
航天技术   51篇
航天   35篇
  2021年   5篇
  2017年   6篇
  2016年   2篇
  2014年   3篇
  2013年   8篇
  2012年   8篇
  2011年   11篇
  2010年   9篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   2篇
  2005年   2篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   11篇
  1994年   3篇
  1993年   8篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   6篇
  1985年   11篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   1篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1967年   3篇
  1966年   2篇
  1965年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
121.
Cygnus X-3 was observed with the GSPC on board EXOSAT on several occasions, one observation lasting for 7 orbital cycles. The width W and centroid energy E of the iron emission feature near 6.7 keV show a smooth, correlated, sinusoidal-type modulation, the iron line being widest and E being lowest just before X-ray maximum. The line profile may show a low-energy wing, but apart from this does not deviate strongly from a symmetric, Gaussian-type shape. The continuum at higher energies than the line is not completely smooth, but shows bumps which remain stable in time. Two possible explanations are discussed for the correlated variation of E and W as a function of orbital phase.  相似文献   
122.
We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes—ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination—is reviewed. Emphasis is placed on those key reactions that have been identified, by sensitivity analyses, as ‘crucial’ in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust particles also influence the observed abundances of molecules in the interstellar medium. Their role is included in gas-grain, as distinct from gas-phase only, models. We review the methods for incorporating both accretion onto, and reactions on, the surfaces of grains in such models, as well as describing some recent experimental efforts to simulate and examine relevant processes in the laboratory. These efforts include experiments on the surface-catalyzed recombination of hydrogen atoms, on chemical processing on and in the ices that are known to exist on the surface of interstellar grains, and on desorption processes, which may enable species formed on grains to return to the gas-phase.  相似文献   
123.
The Spartan 201 flights from 1993 to 1995 provided us with observations in H I Lyman-α of several coronal hole/streamer boundaries and adjacent streamers during the declining phase of the current solar cycle: Analysis of the latitudinal dependence of the line intensities clearly shows that there is a boundary region at the coronal hole/streamer interface where the H I Lyman-α intensity reaches a minimum value. Similar results are also found in UVCS/SOHO observations. We also discuss differences in the coronal hole/streamer boundaries for different types of streamers and their changes over the three year period of Spartan 201 observations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
124.
Orbit manoeuvre of low Earth orbiting (LEO) debris using ground-based lasers has been proposed as a cost-effective means to avoid debris collisions. This requires the orbit of the debris object to be determined and predicted accurately so that the laser beam can be locked on the debris without the loss of valuable laser operation time. This paper presents the method and results of a short-term accurate LEO (<900 km in altitude) debris orbit prediction study using sparse laser ranging data collected by the EOS Space Debris Tracking System (SDTS). A main development is the estimation of the ballistic coefficients of the LEO objects from their archived long-term two line elements (TLE). When an object is laser tracked for two passes over about 24 h, orbit prediction (OP) accuracy of 10–20 arc seconds for the next 24–48 h can be achieved – the accuracy required for laser debris manoeuvre. The improvements in debris OP accuracy are significant in other applications such as debris conjunction analyses and the realisation of daytime debris laser tracking.  相似文献   
125.
Current geophysical knowledge of the planet Mercury is based upon observations from ground-based astronomy and flybys of the Mariner 10 spacecraft, along with theoretical and computational studies. Mercury has the highest uncompressed density of the terrestrial planets and by implication has a metallic core with a radius approximately 75% of the planetary radius. Mercury’s spin rate is stably locked at 1.5 times the orbital mean motion. Capture into this state is the natural result of tidal evolution if this is the only dissipative process affecting the spin, but the capture probability is enhanced if Mercury’s core were molten at the time of capture. The discovery of Mercury’s magnetic field by Mariner 10 suggests the possibility that the core is partially molten to the present, a result that is surprising given the planet’s size and a surface crater density indicative of early cessation of significant volcanic activity. A present-day liquid outer core within Mercury would require either a core sulfur content of at least several weight percent or an unusual history of heat loss from the planet’s core and silicate fraction. A crustal remanent contribution to Mercury’s observed magnetic field cannot be ruled out on the basis of current knowledge. Measurements from the MESSENGER orbiter, in combination with continued ground-based observations, hold the promise of setting on a firmer basis our understanding of the structure and evolution of Mercury’s interior and the relationship of that evolution to the planet’s geological history.  相似文献   
126.
The High Altitude Student Platform (HASP) was originally conceived to provide student groups with access to the near-space environment for flight durations and experiment capabilities intermediate between what is possible with small sounding balloons and low Earth orbit rocket launches. HASP is designed to carry up to twelve student payloads to an altitude of about 36 km with flight durations of 15–20 h using a small zero-pressure polyethylene film balloon. This provides a flight capability that can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. Over the last two years a partnership between the NASA Balloon Program Office (BPO), Columbia Scientific Balloon Facility (CSBF), Louisiana State University (LSU), the Louisiana Board of Regents (BoR), and the Louisiana Space Consortium (LaSPACE) has led to the development, construction and, finally, the first flight of HASP with a complement of eight student payloads on September 4, 2006. Here we discuss the primary as-built HASP systems and features, the student payload interface, HASP performance during the first flight and plans for continuing HASP flights. The HASP project maintains a website at http://laspace.lsu.edu/hasp/ where flight application, interface documentation and status information can be obtained.  相似文献   
127.
The Juno Magnetic Field Investigation   总被引:2,自引:0,他引:2  
The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ~20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = \(1.6 \times 10^{6}\mbox{ nT}\) per axis) with a resolution of ~0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.  相似文献   
128.
Zwickl  R.D.  Doggett  K.A.  Sahm  S.  Barrett  W.P.  Grubb  R.N.  Detman  T.R.  Raben  V.J.  Smith  C.W.  Riley  P.  Gold  R.E.  Mewaldt  R.A.  Maruyama  T. 《Space Science Reviews》1998,86(1-4):633-648
The Advanced Composition Explorer (ACE) RTSW system is continuously monitoring the solar wind and produces warnings of impending major geomagnetic activity, up to one hour in advance. Warnings and alerts issued by NOAA allow those with systems sensitive to such activity to take preventative action. The RTSW system gathers solar wind and energetic particle data at high time resolution from four ACE instruments (MAG, SWEPAM, EPAM, and SIS), packs the data into a low-rate bit stream, and broadcasts the data continuously. NASA sends real-time data to NOAA each day when downloading science data. With a combination of dedicated ground stations (CRL in Japan and RAL in Great Britain), and time on existing ground tracking networks (NASA's DSN and the USAF's AFSCN), the RTSW system can receive data 24 hours per day throughout the year. The raw data are immediately sent from the ground station to the Space Environment Center in Boulder, Colorado, processed, and then delivered to its Space Weather Operations center where they are used in daily operations; the data are also delivered to the CRL Regional Warning Center at Hiraiso, Japan, to the USAF 55th Space Weather Squadron, and placed on the World Wide Web. The data are downloaded, processed and dispersed within 5 min from the time they leave ACE. The RTSW system also uses the low-energy energetic particles to warn of approaching interplanetary shocks, and to help monitor the flux of high-energy particles that can produce radiation damage in satellite systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
129.
Maxwell's equations govern the eddy-current phenomenon, and are the starting point of this analysis. It is shown that Maxwell's equations, as applied to steady-state ac conditions, can be transformed to a Fredholm-type integral equation in eddy-current density. In turn, it is demonstrated that the method of subareas can be used to solve the Fredholm equation. This approach leads to the familiar circuit-analysis concepts of resistance and inductance in finite coupled circuits. The coupledcircuit method can be utilized in cases of complex, mixed boundary conditions without difficulty, as is illustrated by an example of the eddy-current losses in a conducting disk of finite thickness and finite radius, in the presence of a current-carrying loop. Experimental data is presented which confirms the theory, for a range of disk thicknesses. References are included to previous work.  相似文献   
130.
Space Science Reviews - We present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号