全文获取类型
收费全文 | 2469篇 |
免费 | 29篇 |
国内免费 | 12篇 |
专业分类
航空 | 981篇 |
航天技术 | 912篇 |
综合类 | 12篇 |
航天 | 605篇 |
出版年
2022年 | 13篇 |
2021年 | 27篇 |
2019年 | 24篇 |
2018年 | 73篇 |
2017年 | 61篇 |
2016年 | 49篇 |
2015年 | 20篇 |
2014年 | 78篇 |
2013年 | 92篇 |
2012年 | 71篇 |
2011年 | 138篇 |
2010年 | 104篇 |
2009年 | 145篇 |
2008年 | 148篇 |
2007年 | 77篇 |
2006年 | 63篇 |
2005年 | 76篇 |
2004年 | 78篇 |
2003年 | 81篇 |
2002年 | 57篇 |
2001年 | 75篇 |
2000年 | 39篇 |
1999年 | 48篇 |
1998年 | 52篇 |
1997年 | 49篇 |
1996年 | 41篇 |
1995年 | 56篇 |
1994年 | 34篇 |
1993年 | 38篇 |
1992年 | 50篇 |
1991年 | 13篇 |
1990年 | 16篇 |
1989年 | 41篇 |
1988年 | 19篇 |
1987年 | 16篇 |
1986年 | 13篇 |
1985年 | 62篇 |
1984年 | 51篇 |
1983年 | 41篇 |
1982年 | 42篇 |
1981年 | 56篇 |
1980年 | 34篇 |
1979年 | 16篇 |
1978年 | 17篇 |
1977年 | 9篇 |
1976年 | 16篇 |
1975年 | 15篇 |
1974年 | 12篇 |
1971年 | 7篇 |
1969年 | 7篇 |
排序方式: 共有2510条查询结果,搜索用时 46 毫秒
161.
R. Govind F.G. Lemoine J.J. Valette D. Chinn N. Zelensky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Geoscience Australia contributed a multi-satellite, multi-year weekly time series to the International DORIS Service combined submission for the construction of International Terrestrial Reference Frame 2008 (ITRF2008). This contributing solution was extended to a study of the capability of DORIS to dynamically estimate the variation in the geocentre location. Two solutions, comprising different constraint configurations of the tracking network, were undertaken. The respective DORIS satellite orbit solutions (SPOT-2, SPOT-4, SPOT-5 and Envisat) were verified and validated by comparison with those produced at the Goddard Space Flight Center (GSFC), DORIS Analysis Centre, for computational consistency and standards. In addition, in the case of Envisat, the trajectories from the GA determined SLR and DORIS orbits were compared. The results for weekly dynamic geocentre estimates from the two constraint configurations were benchmarked against the geometric geocentre estimates from the IDS-2 combined solution. This established that DORIS is capable of determining the dynamic geocentre variation by estimating the degree one spherical harmonic coefficients of the Earth’s gravity potential. It was established that constrained configurations produced similar results for the geocentre location and consequently similar annual amplitudes. For the minimally constrained configuration Greenbelt–Kitab, the mean of the uncertainties of the geocentre location were 2.3, 2.3 and 7.6 mm and RMS of the mean uncertainties were 1.9, 1.2 and 3.5 mm for the X, Y and Z components, respectively. For GA_IDS-2_Datum constrained configuration, the mean of the uncertainties of the geocentre location were 1.7, 1.7 and 6.2 mm and RMS of the mean uncertainties were 0.9, 0.7 and 2.9 mm for the X, Y and Z components, respectively. The mean of the differences of the two DORIS dynamic geocentre solutions with respect to the IDS-2 combination were 1.6, 4.0 and 5.1 mm with an RMS of the mean 21.2, 14.0 and 31.5 mm for the Greenbelt–Kitab configuration and 4.1, 3.9 and 4.3 mm with an RMS 8.1, 9.0 and 28.6 mm for the GA_IDS-2_Datum constraint configuration. The annual amplitudes for each component were estimated to be 5.3, 10.8 and 11.0 mm for the Greenbelt–Kitab configuration and 5.3, 9.3 and 9.4 mm for the GA_IDS-2_Datum constraint configuration. The two DORIS determined dynamic geocentre solutions were compared to the SLR determined dynamic solution (which was determined from the same process of the GA contribution to the ITRF2008 ILRS combination) gave mean differences of 3.3, −4.7 and 2.5 mm with an RMS of 20.7, 17.5 and 28.0 mm for the X, Y and Z components, respectively for the Greenbelt–Kitab configuration and 1.1, −5.4 and 4.4 mm with an RMS of 9.7, 13.3 and 24.9 mm for the GA_IDS-2_Datum configuration. The larger variability is reflected in the respective amplitudes. As a comparison, the annual amplitudes of the SLR determined dynamic geocentre are 0.9, 1.0 and 6.8 mm in the X, Y and Z components. The results from this study indicate that there is potential to achieve precise dynamically determined geocentre from DORIS. 相似文献
162.
High resolution radar clutter statistics 总被引:6,自引:0,他引:6
Anastassopoulos Lampropoulos G.A. Drosopoulos A. Rey N. 《IEEE transactions on aerospace and electronic systems》1999,35(1):43-60
The generalized compound probability density function (GC-pdf) is presented for modeling high resolution radar clutter. In particular, the model is used to describe deviation of the speckle component from the Rayleigh to Weibull or other pdfs with longer tails. The GC-pdf is formed using the generalized gamma (GΓ) pdf to describe both the speckle and the modulation component of the radar clutter. The proposed model is analyzed and thermal noise is incorporated into it. The validation of the GC-pdf with real data is carried out employing the statistical moments as well as goodness-of-fit tests. A large variety of experimental data is used for this purpose. The GC-pdf outperforms the K-pdf in modeling high resolution radar clutter and reveals its structural characteristics 相似文献
163.
Pulsone N.B. Raghavan R.S. 《IEEE transactions on aerospace and electronic systems》1999,35(3):903-916
Coherent signal detection in non-Gaussian interference is presently of interest in adaptive array applications. Conventional array detection algorithms inherently model the interference with a multivariate Gaussian random vector. However, non-Gaussian interference models are also under investigation for applications where the Gaussian assumption may not be appropriate. We analyze the performance of an adaptive array receiver for signal detection in interference modeled with a non-Gaussian distribution referred to as a spherically invariant random vector (SIRV). We first motivate this interference model with results from radar clutter measurements collected in the Mountain Top Program. Then we develop analytical expressions for the probability of false alarm and the probability of detection for the adaptive array receiver. Our analysis shows that the receiver has constant false alarm rate (CFAR) performance with respect to all the interference parameters. Some illustrative examples are included that compare the detection performance of this CFAR receiver with a receiver that has prior knowledge of the interference parameters 相似文献
164.
Direct Evaluation of Radar Detection Probabilities 总被引:3,自引:0,他引:3
Xiu-Ying Hou Morinaga N. Namekawa T. 《IEEE transactions on aerospace and electronic systems》1987,(4):418-424
A simple and effective procedure for evaluating detectionperformances in radar and sonar detection problems is derived forboth fixed-threshold and adaptive-threshold detection. Using theprocedure, the cumulative probabilities of the test statistic can bedirectly evaluated from the moment generating functions bycalculating residues. The exact formulae for computing the detectionperformances for the chi-square family of fluctuating targets withan integer fluctuation parameter are given in a finite sum formwithout any special functions for both fixed threshold and cellaverageconstant false-alarm rate detection by using the methoddeveloped here. 相似文献
165.
Transient performance of a single-axis rate gyroscope mounted in a spacecraft which is spinning about the spin axis of the gyro is presented. Analytical expressions for various time-domain and frequency-domain specifications as functions of the spin rate of the vehicle are obtained. Numerical results are presented which are useful in selecting the gyro parameters if it is to be used for the measurements of the angular velocity in spinning space vehicles. 相似文献
166.
An alternative expression for the false alarm probability ofclutter map constant false alarm rate (CFAR), as derived by Nitzberg, is suggested. The new expression converges more rapidly. 相似文献
167.
H. Kunow N. U. Crooker J. A. Linker R. Schwenn R. von Steiger 《Space Science Reviews》2006,123(1-3):1-2
168.
This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955–997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge. 相似文献
169.
170.
A. G. Yahnin I. V. Despirak A. A. Lubchich B. V. Kozelov N. P. Dmitrieva M. A. Shukhtina H. K Biernat 《Space Science Reviews》2006,122(1-4):97-106
Although the auroral substorm has been long regarded as a manifestation of the magnetospheric substorm, a direct relation
of active auroras to certain magnetospheric processes is still debatable. To investigate the relationship, we combine the
data of the UV imager onboard the Polar satellite with plasma and magnetic field measurements by the Geotail spacecraft. The
poleward edge of the auroral bulge, as determined from the images obtained at the LHBL passband, is found to be conjugated
with the region where the oppositely directed fast plasma flows observed in the near-Earth plasma sheet during substorms are
generated. We conclude that the auroras forming the bulge are due to the near-Earth reconnection process. This implies that
the magnetic flux through the auroral bulge is equal to the flux dissipated in the magnetotail during the substorm. Comparison
of the magnetic flux through the auroral bulge with the magnetic flux accumulated in the tail lobe during the growth phase
shows that these parameters have the comparable values. This is a clear evidence of the loading–unloading scheme of substorm
development. It is shown that the area of the auroral bulge developing during substorm is proportional to the total (magnetic
plus plasma) pressure decrease in the magnetotail. These findings stress the importance of auroral bulge observations for
monitoring of substorm intensity in terms of the magnetic flux and energy dissipation. 相似文献