全文获取类型
收费全文 | 2474篇 |
免费 | 31篇 |
国内免费 | 9篇 |
专业分类
航空 | 985篇 |
航天技术 | 909篇 |
综合类 | 13篇 |
航天 | 607篇 |
出版年
2022年 | 14篇 |
2021年 | 28篇 |
2019年 | 25篇 |
2018年 | 73篇 |
2017年 | 61篇 |
2016年 | 49篇 |
2015年 | 20篇 |
2014年 | 79篇 |
2013年 | 92篇 |
2012年 | 71篇 |
2011年 | 137篇 |
2010年 | 102篇 |
2009年 | 145篇 |
2008年 | 148篇 |
2007年 | 77篇 |
2006年 | 63篇 |
2005年 | 76篇 |
2004年 | 78篇 |
2003年 | 82篇 |
2002年 | 56篇 |
2001年 | 75篇 |
2000年 | 39篇 |
1999年 | 47篇 |
1998年 | 52篇 |
1997年 | 49篇 |
1996年 | 41篇 |
1995年 | 56篇 |
1994年 | 34篇 |
1993年 | 38篇 |
1992年 | 50篇 |
1991年 | 13篇 |
1990年 | 16篇 |
1989年 | 41篇 |
1988年 | 19篇 |
1987年 | 16篇 |
1986年 | 13篇 |
1985年 | 60篇 |
1984年 | 51篇 |
1983年 | 41篇 |
1982年 | 41篇 |
1981年 | 56篇 |
1980年 | 34篇 |
1979年 | 16篇 |
1978年 | 17篇 |
1977年 | 9篇 |
1976年 | 16篇 |
1975年 | 15篇 |
1974年 | 12篇 |
1971年 | 7篇 |
1969年 | 7篇 |
排序方式: 共有2514条查询结果,搜索用时 0 毫秒
361.
Boston PJ Spilde MN Northup DE Melim LA Soroka DS Kleina LG Lavoie KH Hose LD Mallory LM Dahm CN Crossey LJ Schelble RT 《Astrobiology》2001,1(1):25-55
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms. 相似文献
362.
Xiu-Ying Hou Morinaga N. Namekawa T. 《IEEE transactions on aerospace and electronic systems》1987,(4):418-424
A simple and effective procedure for evaluating detectionperformances in radar and sonar detection problems is derived forboth fixed-threshold and adaptive-threshold detection. Using theprocedure, the cumulative probabilities of the test statistic can bedirectly evaluated from the moment generating functions bycalculating residues. The exact formulae for computing the detectionperformances for the chi-square family of fluctuating targets withan integer fluctuation parameter are given in a finite sum formwithout any special functions for both fixed threshold and cellaverageconstant false-alarm rate detection by using the methoddeveloped here. 相似文献
363.
E. Echer W.D. Gonzalez A. Dal Lago L.E.A. Vieira F.L. Guarnieri A.L.C. Gonzalez N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2313-2317
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2. 相似文献
364.
M.O. Riazantseva O.V. Khabarova G.N. Zastenker J.D. Richardson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,40(12):1802-1806
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries. 相似文献
365.
The Mars Global Surveyor mission has revealed that localized crustal paleomagnetic anomalies are a common feature of the Southern Hemisphere of Mars. The magnetometer measured small-scale magnetic fields associated with many individual magnetic anomalies have magnitudes ranging from hundreds to thousands nT at altitude above 120 km. That makes Mars globally different from both Venus and Earth. The data collected by Lunar Prospector near the Moon were interpreted as evidence that above regions of inferred strong surface magnetic fields on the Moon the SW flow is deflected, and a small-scale mini-magnetosphere exists under some circumstances. With a factor of 100 stronger magnetic fields at Mars and a lower SW dynamic pressure, those conditions offer the opportunity for a larger size of small `magnetospheres' which can be formed by the crustal magnetic fields. Outside the regions of the magnetic anomalies, the SW/Mars interaction is Venus-like. Thus, at Mars the distinguishing feature of the magnetic field pile-up boundary most likely varies from Venus-like to Earth-like above the crustal magnetic field regions. The observational data regarding the IMF pile-up regions near Venus and the Earth are initially reviewed. As long as the SW/Mars interaction remains like that at Venus, the IMF penetrates deep into the Martian ionosphere under the `overpressure' conditions. Results of numerical simulations and theoretical expectations regarding the temporal evolution of the IMF inside the Venus ionosphere and appearance of superthermal electrons are also reviewed and assessed. 相似文献
366.
MESSENGER: Exploring Mercury’s Magnetosphere 总被引:1,自引:0,他引:1
James A. Slavin Stamatios M. Krimigis Mario H. Acuña Brian J. Anderson Daniel N. Baker Patrick L. Koehn Haje Korth Stefano Livi Barry H. Mauk Sean C. Solomon Thomas H. Zurbuchen 《Space Science Reviews》2007,131(1-4):133-160
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity
to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in
many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands
off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic
particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere,
allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar
wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects
may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the
only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive
ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived,
∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic
tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces
in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling
of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are
expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions
all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close
in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the
solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents
is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field.
MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin
of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review
what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the
outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere. 相似文献
367.
Instrument failure detection using the dedicated observer scheme (DOS) depends on partial state observability through each instrument which is monitored. For instrument fault detection by the DOS technique, a quantitative measure of partial state observability is established for each instrument and used to determine a necessary condition on the output structure of the system. This measure, called the internal redundancy of the instrument, indicates the complexity of the logic required for failure detection, and it also indicates where some hardware redundancy can be introduced into the system to improve the fault detection capability of the DOS. The principles developed are applied to a simulation of the pitch axis autopilot of the A7 jet aircraft. 相似文献
368.
This article studies the efficiency of ejecting waste generated by the life support system (LSS) of a manned spacecraft to reduce initial mass on low earth orbit. The spacecraft is used for a long-duration interplanetary mission and is equipped with either a chemical or a nuclear-thermal propulsion system. For this study we simulate an optimal control problem for a given spacecraft maneuver. An impulsive approximation of the optimal interplanetary spacecraft trajectory is assumed, which allows us to reduce the general optimal control problem to hierarchic structure of 'outer' and 'inner' subproblems. This structure is analyzed using the Pontryagin's Maximum principle. Numerical results, illustrating the efficiency of waste ejection are shown for typical Earth-Mars transfer trajectories. This results confirm in theory that using a waste ejection system makes an early manned Mars mission possible without having to design and build new, advanced biological LSS. 相似文献
369.
N. Wichaipanich P. Supnithi T. Tsugawa T. Maruyama T. Nagatsuma 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
In this work, the foF2 and hmF2 parameters at the conjugate points near the magnetic equator of Southeast Asia are studied and compared with the International Reference Ionosphere (IRI) model. Three ionosondes are installed nearly along the magnetic meridian of 100°E; one at the magnetic equator, namely Chumphon (10.72°N, 99.37°E, dip angle 3.0°N), and the other two at the magnetic conjugate points, namely Chiang Mai (18.76°N, 98.93°E, dip angle 12.7°N) and Kototabang (0.2°S, 100.30°E, dip angle 10.1°S). The monthly hourly medians of the foF2 and hmF2 parameters are calculated and compared with the predictions obtained from the IRI-2007 model from January 2004 to February 2007. Our results show that: the variations of foF2 and hmF2 predicted by the IRI-2007 model generally show the similar feature to the observed data. Both parameters generally show better agreement with the IRI predictions during daytime than during nighttime. For foF2, most of the results show that the IRI model overestimates the observed foF2 at the magnetic equator (Chumphon), underestimates at the northern crest (Chiang Mai) and is close to the measured ones at the southern crest of the EIA (Kototabang). For hmF2, the predicted hmF2 values are close to the hmF2(M3000F2OBS) during daytime. During nighttime, the IRI model gives the underestimation at the magnetic equator and the overestimation at both EIA crests. The results are important for the future improvements of the IRI model for foF2 and hmF2 over Southeast Asia region. 相似文献
370.
F.J.T. Salazar E.E.N. Macau O.C. Winter 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Lagrangian points L4 and L5 lie at 60° ahead of and behind the Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth–Moon mass ratio. As so, these Lagrangian points represent remarkable positions to host astronomical observatories or space stations. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies elliptic trajectories from an Earth circular parking orbit to reach the Moon’s sphere of influence and apply a swing-by maneuver in order to re-direct the path of a spacecraft to a vicinity of the Lagrangian points L4 and L5. Once the geocentric transfer orbit and the initial impulsive thrust have been determined, the goal is to establish the angle at which the geocentric trajectory crosses the lunar sphere of influence in such a way that when the spacecraft leaves the Moon’s gravitational field, its trajectory and velocity with respect to the Earth change in order to the spacecraft arrives at L4 and L5. In this work, the planar Circular Restricted Three Body Problem approximation is used and in order to avoid solving a two boundary problem, the patched-conic approximation is considered. 相似文献