This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements. 相似文献
The Ariane transfer vehicle (ATV), an Ariane 5 borne, unmanned propulsion vehicle, is designed to transport the logistics needed to resupply the International Space Station (ISS) and the man tended free flyer (MTFF) step 2 with pressurized and unpressurized cargo and to dispose the waste. The ATV is an expendable vehicle and is disposed of by a safe atmospheric burn up. In accordance with the AR5 schedule it should be operational in 1996 for missions toward ISS and beyond the year 2000 for MTFF 2 missions. The main constituents of the proposed ATV are the modified AR5 third stage L5, an upgraded VEB steering the launcher as well as the ATV and the P/L-adaptor providing mechanical and umbilical links to the payload. The mechanical part of the RVD-kit will be placed on the payload-module, the main RVD sensors are located on the adaptor and the needed computer intelligence will be integrated on the VEB. To minimize the development, and recurring costs, the ATV concept fully complies to the idea of maximum use of existing hardware and software, mainly from the AR5, Hermes and Columbus programs thus minimizing development and recurring costs. The ATV is compatible to ISS, MTFF and OMV and is able to transport logistic modules compatible with NSTS and U.S.-expendable launchers. 相似文献
It is well known that temperature- and watervapour-profiles, ozone concentration, other atmospheric constituents and the surface-radiation of the Earth can be determined by remote sensing in the IR radiation range with the aid of a satellite.
The narrow-band radiation measurements for remote sensing of the atmosphere and the Earth-surface can be realized either by various radiometers working in selected frequency channels or, continuously in a given frequency range, by spectrometers with fixed spectral resolution.
Fourier-spectrometers (FS) have been used in Earth-orbit only four times up to now: Nimbus 3, Nimbus 4, Meteor 25 and Meteor 28.
The most important technical parameters, the working regime and some aspects of date processing of the FSs working aboard of Meteor 25 and Meteor 28 are given. For the determination of calibrated absolute spectra a method is used that is based on the experience of the first experiment and on the long time stability of the spectrometers. The results obtained in laboratory calibration tests and in the orbit are described. 相似文献
In the 18.5-day flight of the Soviet biosatellite Cosmos-936 (3-22, August 1977) com-parative investigations of the physiological effects of prolonged weightlessness (20 rats) and artificial gravity of 1 g (10 rats) were carried out. Throughout the flight artificial gravity was generated by means of animal rotation in two centrifuges with a radius of 320mm. Postflight examination of animals and treatment of the flight data were performed by Soviet scientists in collaboration with the specialists from Bulgaria, Czechoslovakia, the German Democratic Republic, Hungary, Poland, Rumania, France and the U.S.A. During the flight the total motor activity of the weightless rats was higher and their body temperature was lower than those of the centrifuged animals. Postflight examination of the weightless rats showed a greater percentage of errors during maze an increase in water intake and a decrease in diuresis; a fall of the resistance of peripheral red cells; an increase in the conditionally pathogenic microflora in the mouth; a decrease of oxygen consumption, carbon dioxide production and energy expenditures; a drop in the static physical endurance; a decline in the capacity to keep balance on the rail; an increase in the latent period of the lifting reflex, etc. The centrifugal animals displayed lesser or no change of the above type. These findings together with the biochemical and morphological data give evidence that during and after flight adaptive processes in the centrifuged rats developed better. 相似文献
Attitude control techniques for the pointing and stabilization of very large, inherently flexible spacecraft systems are investigated. The attitude dynamics and control of a long, homogeneous flexible beam whose center of mass is assumed to follow a circular orbit is analyzed. In this study, first order effects of gravity-gradient are included, whereas external perturbations and related orbital station keeping maneuvers are neglected. A mathematical model which describes the system deflections within the orbital plane has been developed by treating the beam as having a maximum of three discretized mass particles connected by massless, elastic structural elements. The uncontrolled dynamics of this system are simulated and, in addition, the effects of the control devices are considered. The concept of distributed modal control, which provides a means for controlling a system mode independently of all other modes, is examined. The effect of varying the number of modes in the model as well as the number and location of the control devices are also considered. 相似文献
The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station (ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°. 相似文献
Cytos 2 experiment, carried out during the French-Soviet manned flight (July 1982), has studied the antibiotics sensitivity of bacteria cultivated in vitro during the orbital flight. The results show an increase of the antibiotics resistance and a larger thickness of the cellular envelope for the inflight cells. The increase of antibiotics resistance can be related to a stimulating effect of space on the cell growth rate or to changes of the cellular envelope structure. 相似文献
Complex honeycomb space structures (i.e. antennas, solar panels, etc.) must be inspected and accurately tested before flight.The thermography can be employed with success for the detection of the position of defects (delaminations, noneffective bondings, cracks, etc.) and for the evaluation of their size and geometry in all the cases in which the defect acts as a thermal resistance due to the low conductivity of the air filling the defect volume.The basic idea is to create in the specimen a heat flow distribution that is altered by the presence of the defect.The surface temperature distribution is then measured by means of a thermograph and is correlated with the presence of the defect.A numerical analysis and preliminary experiments have been carried out which show the feasibility of the method as applied to honeycomb structures. 相似文献