全文获取类型
收费全文 | 2476篇 |
免费 | 31篇 |
国内免费 | 9篇 |
专业分类
航空 | 985篇 |
航天技术 | 909篇 |
综合类 | 13篇 |
航天 | 609篇 |
出版年
2022年 | 14篇 |
2021年 | 28篇 |
2019年 | 25篇 |
2018年 | 73篇 |
2017年 | 61篇 |
2016年 | 49篇 |
2015年 | 20篇 |
2014年 | 79篇 |
2013年 | 92篇 |
2012年 | 71篇 |
2011年 | 137篇 |
2010年 | 102篇 |
2009年 | 145篇 |
2008年 | 148篇 |
2007年 | 77篇 |
2006年 | 63篇 |
2005年 | 76篇 |
2004年 | 78篇 |
2003年 | 83篇 |
2002年 | 56篇 |
2001年 | 75篇 |
2000年 | 39篇 |
1999年 | 47篇 |
1998年 | 52篇 |
1997年 | 49篇 |
1996年 | 41篇 |
1995年 | 56篇 |
1994年 | 34篇 |
1993年 | 38篇 |
1992年 | 50篇 |
1991年 | 13篇 |
1990年 | 16篇 |
1989年 | 41篇 |
1988年 | 19篇 |
1987年 | 16篇 |
1986年 | 13篇 |
1985年 | 60篇 |
1984年 | 51篇 |
1983年 | 41篇 |
1982年 | 41篇 |
1981年 | 56篇 |
1980年 | 35篇 |
1979年 | 16篇 |
1978年 | 17篇 |
1977年 | 9篇 |
1976年 | 16篇 |
1975年 | 15篇 |
1974年 | 12篇 |
1971年 | 7篇 |
1969年 | 7篇 |
排序方式: 共有2516条查询结果,搜索用时 0 毫秒
991.
Wiring system failures have resulted from arc propagation in the wiring harnesses of many aircraft and space vehicles. These failures occur when the insulation becomes conductive upon the initiation of an arc. In some cases, the conductive path of the carbon arc track displays a high enough resistance such that the current is limited, and therefore may be difficult to detect using conventional circuit protection. Often, such wiring failures are not simply the result of insulation failure but are due to a combination of wiring system factors. Inadequate circuit protection, unreliable system designs, and careless maintenance procedures can contribute to a wiring system failure. This paper approaches the problem with respect to the overall wiring system, in order to determine what steps can be taken to improve the reliability, maintainability, and safety of space power systems. Power system technologies, system designs, and maintenance procedures which have contributed to past wiring system failures are discussed. New technologies, design processes, and management techniques which may lead to improved wiring system safety are introduced 相似文献
992.
W G Sannita M Acquaviva S L Ball F Belli S Bisti V Bidoli S Carozzo M Casolino F Cucinotta M P De Pascale L Di Fino S Di Marco R Maccarone C Martello J Miller L Narici N S Peachey P Picozza A Rinaldi D Ruggieri M Saturno D Schardt M Vazquez 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(8):1347-1351
ALTEA-MICE will supplement the ALTEA project on astronauts and provide information on the functional visual impairment possibly induced by heavy ions during prolonged operations in microgravity. Goals of ALTEA-MICE are: (1) to investigate the effects of heavy ions on the visual system of normal and mutant mice with retinal defects; (2) to define reliable experimental conditions for space research; and (3) to develop animal models to study the physiological consequences of space travels on humans. Remotely controlled mouse setup, applied electrophysiological recording methods, remote particle monitoring, and experimental procedures were developed and tested. The project has proved feasible under laboratory-controlled conditions comparable in important aspects to those of astronauts' exposure to particle in space. Experiments are performed at the Brookhaven National Laboratories [BNL] (Upton, NY, USA) and the Gesellschaft für Schwerionenforschung mbH [GSI]/Biophysik (Darmstadt, FRG) to identify possible electrophysiological changes and/or activation of protective mechanisms in response to pulsed radiation. Offline data analyses are in progress and observations are still anecdotal. Electrophysiological changes after pulsed radiation are within the limits of spontaneous variability under anesthesia, with only indirect evidence of possible retinal/cortical responses. Immunostaining showed changes (e.g. increased expression of FGF2 protein in the outer nuclear layer) suggesting a retinal stress reaction to high-energy particles of potential relevance in space. 相似文献
993.
V. V. Vas'kov N. I. Bud'ko O. V. Kapustina G. A. Mikhailova Yu. M. Mikhailov I. S. Prutenskiy P. P. Belyaev G. P. Komrakov A. N. Maresov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(12):57-58
Wave effects are discussed pointing to improvement of whistler propagation in the ionosphere illuminated by a powerful radio wave. The large scale irregularities (ducts) responsible for these effects are formed in the illuminated ionospheric region by the process of electron heating by the fields of the pump wave and excited plasma oscillations. These irregularities may also be created in the ionosphere and plasmasphere by fluxes of suprathermal electrons accelerated by the plasma turbulence in the reflection region of the pump wave. 相似文献
994.
S Watanabe M Tanaka Y Wada D Yanagihara N Tsujimoto H Suzuki N Kawai M Yamashita S Nagaoka T Shoji S Higashino H Sudoh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):243-247
As the second telescience testbed experiment we were examined sophisticated processes of biomedical experiment, such as an implantation of a transmitter into the hamster's abdominal cavity, non-stressful blood sampling, large amount of blood collection, muscle extirpation and biopsy from the hamsters on February 6-8, 1990. To make clear the differences between successful results obtained by an experienced hand and by a non-experienced one, three operators were selected for three successive experimental days; an engineer who had never experienced any biological experiment, a non-biology student, who experienced on biological experiments, and a veterinary surgeon. Surgical procedures need much experiences on maneuvering and understanding of theory to shorten the elapse time. Especially for a non-experienced hand, graphic instructions were much helpful to understand and to maneuver the procedures. Continuous recordings of ECG from a operator and PIs were of an advantage to grasp an extent of the mental strain, which was compared with their reports requested after end of each experimental day. The mental strain was not related to degrees of scientific achievement, but showed faithfully difficulty of each experimental procedure. Training effects on PIs in successive experimental days were found in their instructions for the operator to let understand the procedures. 相似文献
995.
F. Dahl G. Klein K. Proetel N. Römisch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(4):131-134
The German Infrared Laboratory GIRL is a liquid helium-cooled telescope with four focal plane instruments dedicated to astronomical and aeronomical observations.Hardware tests were performed with a thermal model of the cryostat and other components as active phase separator, optical switches, main mirror, baffle etc.In the test phase the thermal behavior of the system was checked out in a step by step procedure. The timeline of the individual experiments and of two representative orbits were simulated by electrical heaters. Temperatures and helium flow rates for the different operation modes were measured.An outlook shows that the project phase in 1982 is dedicated to further development and tests of hardware and complete definition and specification of all GIRL systems. 相似文献
996.
Zwickl R.D. Doggett K.A. Sahm S. Barrett W.P. Grubb R.N. Detman T.R. Raben V.J. Smith C.W. Riley P. Gold R.E. Mewaldt R.A. Maruyama T. 《Space Science Reviews》1998,86(1-4):633-648
The Advanced Composition Explorer (ACE) RTSW system is continuously monitoring the solar wind and produces warnings of impending
major geomagnetic activity, up to one hour in advance. Warnings and alerts issued by NOAA allow those with systems sensitive
to such activity to take preventative action. The RTSW system gathers solar wind and energetic particle data at high time
resolution from four ACE instruments (MAG, SWEPAM, EPAM, and SIS), packs the data into a low-rate bit stream, and broadcasts
the data continuously. NASA sends real-time data to NOAA each day when downloading science data. With a combination of dedicated
ground stations (CRL in Japan and RAL in Great Britain), and time on existing ground tracking networks (NASA's DSN and the
USAF's AFSCN), the RTSW system can receive data 24 hours per day throughout the year. The raw data are immediately sent from
the ground station to the Space Environment Center in Boulder, Colorado, processed, and then delivered to its Space Weather
Operations center where they are used in daily operations; the data are also delivered to the CRL Regional Warning Center
at Hiraiso, Japan, to the USAF 55th Space Weather Squadron, and placed on the World Wide Web. The data are downloaded, processed
and dispersed within 5 min from the time they leave ACE. The RTSW system also uses the low-energy energetic particles to warn
of approaching interplanetary shocks, and to help monitor the flux of high-energy particles that can produce radiation damage
in satellite systems.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
997.
Ping Yin Cathryn N. Mitchell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
There is a lack of independent ionospheric data that can be used to validate GPS imaging results at mid latitudes over severe storm times. Doppler Orbitography and Radio positioning Integrated by Satellite (DORIS), a global network of dual-frequency ground to satellite observations, provides this missing data and here is employed as verification to show the accuracy of the ionospheric GPS images in terms of the total electron content (TEC). In this paper, the large-scale ionospheric structures that appeared during the strong geomagnetic storm of 20 November 2003 are reconstructed with a GPS tomographic algorithm, known as MIDAS, and validated with DORIS TEC measurements. The main trough shown in an extreme equatorward position in the ionospheric imaging over mainland Europe is confirmed by DORIS satellite measurements. Throughout the disturbed day, the variations of relative slant TECs between DORIS data and MIDAS results agree quite well, with the average of the mean differences about 2 TECu. We conclude that as a valuable supplement to GPS data, DORIS ionospheric measurements can be used to analyse TEC variations with a relatively high resolution, ∼10 s in time and tens of kilometres in space. This will be very helpful for identification of some highly dynamic structures in the ionosphere found at mid-latitudes, such as the main trough, TID (Travelling Ionospheric Disturbances) and SED (Storm Enhanced Density), and could be used as a valuable auxiliary data source in ionospheric imaging. 相似文献
998.
The transient behaviour of the liquid propellant rocket engine is accompanied by non-stationary heat processes in the combustion chamber, the cooling jacket, and the injector. Based on the analysis of the phenomena, which take place in the liquid propellant rocket engine after cut-off command, the major stages of the curve of the rocket thrust drop were defined. A mathematical model of heat processes is suggested, which includes the calculation of transient heat transfer in the chamber, and the detection of boiling-up of the liquid fuel components in the cooling jacket and in the injector. The determination of the law of the rocket thrust drop and a calculation of the after-effect impulse (AEI) are presented. The calculated transient heat flux the combustion chamber and the transient wall temperatures were compared with experimental data, which were received during starting, and with the impulsive behaviour of the liquid propellant rocket engine. 相似文献
999.
The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission 总被引:1,自引:0,他引:1
S. Barabash R. Lundin H. Andersson K. Brinkfeldt A. Grigoriev H. Gunell M. Holmström M. Yamauchi K. Asamura P. Bochsler P. Wurz R. Cerulli-Irelli A. Mura A. Milillo M. Maggi S. Orsini A. J. Coates D. R. Linder D. O. Kataria C. C. Curtis K. C. Hsieh B. R. Sandel R. A. Frahm J. R. Sharber J. D. Winningham M. Grande E. Kallio H. Koskinen P. Riihelä W. Schmidt T. Säles J. U. Kozyra N. Krupp J. Woch S. Livi J. G. Luhmann S. McKenna-Lawlor E. C. Roelof D. J. Williams J.-A. Sauvaud A. Fedorov J.-J. Thocaven 《Space Science Reviews》2006,126(1-4):113-164
The general scientific objective of the ASPERA-3 experiment is to study the solar wind – atmosphere interaction and to characterize
the plasma and neutral gas environment with within the space near Mars through the use of energetic neutral atom (ENA) imaging
and measuring local ion and electron plasma. The ASPERA-3 instrument comprises four sensors: two ENA sensors, one electron
spectrometer, and one ion spectrometer. The Neutral Particle Imager (NPI) provides measurements of the integral ENA flux (0.1–60
keV) with no mass and energy resolution, but high angular resolution. The measurement principle is based on registering products
(secondary ions, sputtered neutrals, reflected neutrals) of the ENA interaction with a graphite-coated surface. The Neutral
Particle Detector (NPD) provides measurements of the ENA flux, resolving velocity (the hydrogen energy range is 0.1–10 keV)
and mass (H and O) with a coarse angular resolution. The measurement principle is based on the surface reflection technique.
The Electron Spectrometer (ELS) is a standard top-hat electrostatic analyzer in a very compact design which covers the energy
range 0.01–20 keV. These three sensors are located on a scanning platform which provides scanning through 180∘ of rotation. The instrument also contains an ion mass analyzer (IMA). Mechanically IMA is a separate unit connected by a
cable to the ASPERA-3 main unit. IMA provides ion measurements in the energy range 0.01–36 keV/charge for the main ion components
H+, He++, He+, O+, and the group of molecular ions 20–80 amu/q. ASPERA-3 also includes its own DC/DC converters and digital processing unit
(DPU). 相似文献
1000.
Committee on Space Policy H.Guyford Stever Laurence J. Adams Consultant Retired President William A. Anders Senior Executive Vice President Arden L. Bement Jr Vice President Joseph V. Charyk Chairman of the Board Retired Chairman CEO Richard N. Cooper Robert S. Cooper President Edward E. David Jr President John M. Logsdon Director Jeremiah P. Ostriker Director Samuel C. Phillips Retired General Elmer B. Staats Edward C. Stone Jr Vice President 《Space Policy》1989,5(3)