首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5577篇
  免费   31篇
  国内免费   21篇
航空   2482篇
航天技术   2026篇
综合类   20篇
航天   1101篇
  2021年   50篇
  2019年   38篇
  2018年   113篇
  2017年   91篇
  2016年   81篇
  2015年   33篇
  2014年   119篇
  2013年   158篇
  2012年   139篇
  2011年   248篇
  2010年   186篇
  2009年   258篇
  2008年   295篇
  2007年   168篇
  2006年   126篇
  2005年   167篇
  2004年   172篇
  2003年   182篇
  2002年   123篇
  2001年   172篇
  2000年   86篇
  1999年   119篇
  1998年   148篇
  1997年   113篇
  1996年   104篇
  1995年   154篇
  1994年   148篇
  1993年   87篇
  1992年   113篇
  1991年   41篇
  1990年   53篇
  1989年   99篇
  1988年   46篇
  1987年   39篇
  1986年   50篇
  1985年   171篇
  1984年   149篇
  1983年   119篇
  1982年   102篇
  1981年   190篇
  1980年   62篇
  1979年   42篇
  1978年   51篇
  1977年   41篇
  1976年   42篇
  1975年   48篇
  1974年   39篇
  1973年   37篇
  1972年   47篇
  1969年   28篇
排序方式: 共有5629条查询结果,搜索用时 343 毫秒
741.
As the human exploration of space has received new attention in the United States, studies find that exposure to space radiation could adversely impact the mission design. Galactic Cosmic Radiation (GCR), with its very wide range of charges and energies, is particularly important for a mission to Mars, because it imposes a stiff mass penalty for spacecraft shielding. Dose equivalent versus shielding thickness calculations, show a rapid initial drop in exposure with thickness, but an asymptotic behavior at a higher shielding thickness. Uncertainties in the radiobiology are largely unknown. For a fixed radiation risk, this leads to large uncertain ties in shielding thickness for small uncertainties in estimated dose. In this paper we investigate the application of steady-state, spherically-symmetric diffusion-convection theory of solar modulation to individual measurements of differential energy spectra from 1954 to 1989 in order to estimate the diffusion coefficient, kappa (r,t), as a function of time. We have correlated the diffusion coefficient to the Climax neutron monitor rates and show that, if the diffusion coefficient can be separated into independent functions of space and time: kappa (-r,t)=K(t)kappa 0 beta P kappa 1(r), where beta is the particle velocity and P the rigidity, then (i) The time dependent quantity 1/K(t), which is proportional to the deceleration potential, phi(r,t), is linearly related to the Climax neutron monitor counting rate. (ii) The coefficients obtained from hydrogen or helium intensity measurements are the same. (iii) There are different correlation functions for odd and even solar cycles. (iv) The correlation function for the Climax neutron monitor counting rate for given time, t, can be used to estimate mean deceleration parameter phi(t) to within +/- 15% with 90% confidence. We have shown that kappa(r,t) determined from hydrogen and/or helium data, can be used to fit the oxygen and iron differential energy spectra with a root mean square error of about +/- 10%, and essentially independent of the particle charge or energy. We have also examined the ion chamber and 14C measurements which allow the analysis to be extended from the year 1906 to 1990. Using this model we have defined reference GCR spectra at solar minimum and solar maximum. These can be used for space exploration studies and provide a quantitative estimate of the error in dose due to changes in GCR intensities.  相似文献   
742.
Time period from October 1996 until January 1998 was checked on high energy resolution DOK2 energetic particle instrument measurements on Interball-1 and Interball-2 for the ion (> 20 keV) dispersive events (EDIS) with the exclusion of Interball-1 orbit parts in the tail. A variety of energy dispersive events, both in ion and electron spectra with different duration is found in the auroral regions, in the outer magnetosphere and near the cusp. While EDIS were observed in all sectors of MLT, the best conditions for their observation were in the afternoon local time. The characteristics of dispersive events observed by DOK2 are consistent with their explanation by the gradient-curvature drift of particles from the injection point(s) in the night local time sector given in Lutsenko at al., 2000a, b.  相似文献   
743.
Lyubimov  G. P. 《Cosmic Research》2002,40(6):565-570
The local radiation belts of the Sun are defined as giant quasi-stationary coronal and heliospheric traps for solar cosmic rays. These traps are formed by loop magnetic fields, both solar and interplanetary. Using observational data, some experimental examples of the local radiation belts of the Sun are considered. The hypotheses on the origin of energetic particles in the outer heliosphere and on the local radiation belts of the Sun are discussed.  相似文献   
744.
Solar oscillations provide the most accurate measures of cycle dependent changes in the sun, and the Solar and Heliospheric Observatory/Michelson Doppler Imager (MDI) data are the most precise of all. They give us the opportunity to address the real challenge — connecting the MDI seismic measures to observed characteristics of the dynamic sun. From inversions of the evolving MDI data, one expects to determine the nature of the evolution, through the solar cycle, of the layers just beneath the sun's surface. Such inversions require one to guess the form of the causal perturbation — usually beginning with asking whether it is thermal or magnetic. Matters here are complicated because the inversion kernels for these two are quite similar, which means that we don't have much chance of disentangling them by inversion. However, since the perturbation lies very close to the solar surface, one can use synoptic data as an outer boundary condition to fix the choice. It turns out that magnetic and thermal synoptic signals are also quite similar. Thus, the most precise measure of the surface is required.

We argue that the most precise synoptic data come from the Big Bear Solar Observatory (BBSO) Solar Disk Photometer (SDP). A preliminary analysis of these data implies a magnetic origin of the cycle-dependent sub-surface perturbation. However, we still need to do a more careful removal of the facular signal to determine the true thermal signal.  相似文献   

745.
Most utility power quality problems are caused by sags, surges, and momentary outages which last from several cycles to several seconds. Modern loads are very sensitive to these short duration glitches resulting in major losses in revenue through system down-time and loss of product from work in process. Many of these problems are caused by normal transients as equipment and factories go on-line or shut down. Others are caused by lightening strikes and faults on the distribution system. Although power utility companies attempt to minimize the interruptions through filtering and system management, power quality problems continue to cost American industry billions of dollars a year. Batteries have been used for many years in uninterruptible power supplies (UPS) to protect critical loads. However, because many new facilities have a network of broadly distributed critical loads, a UPS on the order of one to several megawatts is needed to support the total plant rather than several small kilowatt installations. This paper reports on the implementation of such a utility scale power quality management system  相似文献   
746.
A nickel cadmium cell system which utilizes a polypropylene separator impregnated with polybenzimadazole, and which shows promise of providing an aerospace battery with performance equivalent to Super NiCd, and yet is more cost effective, is described. Background information, cell construction information, detailed test program information and data, and status of qualification are given  相似文献   
747.
On phased-array radar tracking and parameter control   总被引:1,自引:0,他引:1  
Based on a simple model of a ground-based phased-array radar used for a multiple-target surveillance task, beam scheduling, positioning, and radar parameters like signal-to-noise ratio, track sharpness, and detection threshold have been optimized with respect to the radar/computer load induced by tracking. From this the minimum energy necessary for track maintenance during surveillance can be derived  相似文献   
748.
A space-based radar system concept is described that can provide continuous world-wide, all-weather, day-night observation and tracking of ships, aircraft, vehicles and ground facilities of interest. The system employs a constellation of radar satellites in low-earth orbit to provide continuous world-wide target access. The radars employ reflector antennas, TWT transmitters and high frequency (e.g., X band) to achieve long range with relatively low weight, complexity and cost. The radars operate in moving-target-detection (MTD) and synthetic-aperture-radar (SAR) spotlight imaging modes to observe moving and fixed targets, respectively. The system could support a wide range of military, intelligence, law-enforcement and civilian missions  相似文献   
749.
To cancel clutter, both medium-PRF waveforms which are ambiguous in both range and Doppler and high-PRF waveforms which are ambiguous in range but unambiguous in ambiguities, a previous paper has shown that superior results for a single target can be achieved by using a clustering algorithm. Here, the problem of multiple targets is considered. A maximum likelihood (ML) technique which incorporates the clustering algorithm is developed for the multiple target problem. Simulation results show that four targets which have the same speed but are at different ranges can be resolved by using a medium-PRF waveform and employing the ML resolution technique  相似文献   
750.
Solar and stellar activity is a result of complex interaction between magnetic field, turbulent convection and differential rotation in a star’s interior. Magnetic field is believed to be generated by a dynamo process in the convection zone. It emerges on the surface forming sunspots and starspots. Localization of the magnetic spots and their evolution with the activity cycle is determined by large-scale interior flows. Thus, the internal dynamics of the Sun and other stars hold the key to understanding the dynamo mechanism and activity cycles. Recently, significant progress has been made for modeling magnetohydrodynamics of the stellar interiors and probing the internal rotation and large-scale dynamics of the Sun by helioseismology. Also, asteroseismology is beginning to probe interiors of distant stars. I review key achievements and challenges in our quest to understand the basic mechanisms of solar and stellar activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号