首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5577篇
  免费   31篇
  国内免费   21篇
航空   2482篇
航天技术   2026篇
综合类   20篇
航天   1101篇
  2021年   50篇
  2019年   38篇
  2018年   113篇
  2017年   91篇
  2016年   81篇
  2015年   33篇
  2014年   119篇
  2013年   158篇
  2012年   139篇
  2011年   248篇
  2010年   186篇
  2009年   258篇
  2008年   295篇
  2007年   168篇
  2006年   126篇
  2005年   167篇
  2004年   172篇
  2003年   182篇
  2002年   123篇
  2001年   172篇
  2000年   86篇
  1999年   119篇
  1998年   148篇
  1997年   113篇
  1996年   104篇
  1995年   154篇
  1994年   148篇
  1993年   87篇
  1992年   113篇
  1991年   41篇
  1990年   53篇
  1989年   99篇
  1988年   46篇
  1987年   39篇
  1986年   50篇
  1985年   171篇
  1984年   149篇
  1983年   119篇
  1982年   102篇
  1981年   190篇
  1980年   62篇
  1979年   42篇
  1978年   51篇
  1977年   41篇
  1976年   42篇
  1975年   48篇
  1974年   39篇
  1973年   37篇
  1972年   47篇
  1969年   28篇
排序方式: 共有5629条查询结果,搜索用时 546 毫秒
601.
Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year.  相似文献   
602.
To understand the mechanisms of accelerated heavy ions on biological matter, the responses of spores of B. subtilis to this structured high LET radiation was investigated applying two different approaches. 1) By the use of the Biostack concept, the inactivation probability as a function of radial distance to single particles' trajectory (i.e. impact parameter) was determined in space experiments as well as at accelerators using low fluences of heavy ions. It was found that spores can survive even a central hit and that the effective range of inactivation extends far beyond impact parameters where inactivation by delta-ray dose would be effective. Concerning the space experiment, the inactivation cross section exceeds those from comparable accelerator experiments by roughly a factor of 20. 2) From fluence effect curves, cross sections for inactivation and mutation induction, and the efficiency of repair processes were determined. They are influenced by the ions characteristics in a complex manner. According to dependence on LET, at least 3 LET ranges can be differentiated: A low LET range (app. < 200 keV/micrometers), where cross sections for inactivation and mutation induction follow a common curve for different ions and where repair processes are effective; an intermediate LET range of the so-called saturation cross section with negligible mutagenic and repair efficiency; and a high LET range (>1000 keV/micrometers) where the biological endpoints are majorly dependent on atomic mass and energy of the ion under consideration.  相似文献   
603.
Two orbits were selected in January–February 2006 when the separation between the Cluster spacecraft was large and mirror type magnetic field fluctuations were observed by all spacecraft in different regions of the terrestrial magnetosheath. Minimum variance analysis was applied to find the mirror type fluctuations, and the amplitude of the fluctuations was determined individually. Mirror mode structures are moving along the streamlines frozen in the plasma. A model was developed for the calculation of plasma flowtime from the bow shock to the observation point. The growth rate of the field strength perturbations was estimated by comparing the amplitudes of fluctuations observed simultaneously at distant locations (∼10,000 km) based on the assumption that δB ∼ exp(γt). The obtained growth rate values were about an order of magnitude smaller than those provided by linear models and they decreased in the inner regions of the magnetosheath, indicating some saturation in the growth of the waves when proceeding towards the magnetopause. The results of these two case studies suggest that mirror type fluctuations originate from the compression region downstream of the quasi-perpendicular bow shock, and the growth of the fluctuations cannot be described by linear approximations.  相似文献   
604.
The synthesizing of pseudorandom signals which possess an odd crosscorrelation function of useful characteristics is presented. The characteristics are applicable for signal tracking systems such as those associated with ranging instrumentation and spread-spectrum communication. Another property of these signals is that they possess a zero dc component which may be applied for radiating useful carrierless signals.  相似文献   
605.
Mutations occur at a higher rate in space than under terrestrial conditions, primarily due to an increase in radiation levels. These mutations may effect the productivity of plants found in a controlled ecological life support system (CELSS). Computer simulations of plants with different ploidies, modes of reproduction, lethality thresholds, viability thresholds and susceptibilities to radiation induced mutations were performed under space normal and solar flare conditions. These simulations identified plant characteristics that would enable plants to retain high productivities over time in a CELSS.  相似文献   
606.
In this review we discuss the progress of the past decade in testing for a possible temporal variation of the fine structure constant α. Advances in atomic sample preparation, laser spectroscopy and optical frequency measurements led to rapid reduction of measurement uncertainties. Eventually laboratory tests became the most sensitive tool to detect a possible variation of α at the present epoch. We explain the methods and technologies that helped to make this possible.  相似文献   
607.
An autonomous spacecraft must balance long-term and short-term considerations. It must perform purposeful activities that ensure long-term science and engineering goals are achieved and ensure that it maintains positive resource margins. This requires planning in advance to avoid a series of shortsighted decisions that can lead to failure. However, it must also respond in a timely fashion to a somewhat dynamic and unpredictable environment. Thus, in terms of high-level, goal-oriented activity, spacecraft plans must often be modified due to fortuitous events such as early completion of observations and setbacks such as failure to acquire a guidestar for a science observation. This describes an integrated planning and execution architecture that supports continuous modification and updating of a current working plan in light of a changing operating context.  相似文献   
608.
Metallic resonator Q-factor is very sensitive to the resonator's material, its thermal and chemical treatment, design, and environment; i.e., pressure and temperature. In order to obtain higher accuracy for CVG it is necessary to use resonator evacuation. Resonator mass plays a very important role in sensitivity to angle rate, in stability of vibration, in response to environmental condition changes, and also to external vibration and shock resistance. tnnalabs Holding Inc. uses a cylindrical resonator with increased rim thickness of up to 2 mmn and more. This concerns resonator material and design parameters selection, material thermal treatment to increase resonator Q-factor, and improved control algorithms in order to increase metallic CVG accuracy. As a result, CVG bias instability of 0.025 degth and random walk of 0.008 degvh for the resonator diameter 43 mmn, and 0.2 deg/h for the resonator diameter 25 mm were obtained. Future opportunities for Innalabs CVG is also discussed herein. Test results are presented for CVG43 and CVG25. Three-axis CVG unit under control of one DSP "Sharc" and IMU parameters are forecasted.  相似文献   
609.
A technique for selecting a rational variant of a multifunctional aircraft system using the analytic hierarchy process is proposed and a solution of a practical problem is presented.  相似文献   
610.
The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the period February 20 – April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°–60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 μGy h−1 behind 1.75 g cm−2 shielding at Foton M2, 2314 μGy h−1 behind 0.71 g cm−2 shielding at Foton M3 and 19,195 μGy h−1 (Flux is 8363 cm−2 s−1) behind les than 0.4 g cm−2 shielding at ISS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号