首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5577篇
  免费   31篇
  国内免费   21篇
航空   2482篇
航天技术   2026篇
综合类   20篇
航天   1101篇
  2021年   50篇
  2019年   38篇
  2018年   113篇
  2017年   91篇
  2016年   81篇
  2015年   33篇
  2014年   119篇
  2013年   158篇
  2012年   139篇
  2011年   248篇
  2010年   186篇
  2009年   258篇
  2008年   295篇
  2007年   168篇
  2006年   126篇
  2005年   167篇
  2004年   172篇
  2003年   182篇
  2002年   123篇
  2001年   172篇
  2000年   86篇
  1999年   119篇
  1998年   148篇
  1997年   113篇
  1996年   104篇
  1995年   154篇
  1994年   148篇
  1993年   87篇
  1992年   113篇
  1991年   41篇
  1990年   53篇
  1989年   99篇
  1988年   46篇
  1987年   39篇
  1986年   50篇
  1985年   171篇
  1984年   149篇
  1983年   119篇
  1982年   102篇
  1981年   190篇
  1980年   62篇
  1979年   42篇
  1978年   51篇
  1977年   41篇
  1976年   42篇
  1975年   48篇
  1974年   39篇
  1973年   37篇
  1972年   47篇
  1969年   28篇
排序方式: 共有5629条查询结果,搜索用时 500 毫秒
461.
Dry films of amino acids mixtures glycine+ tryptophan and tryptophan were exposed on the surface of "Mir" station. Similar films were irradiated by vacuum ultra violet (145 nm) and ultra violet (254 nm) in the laboratory experiments. Gly-Gly, Trp-Gly, Gly-Trp, Tpr-Trp and Trp-Trp-Trp were the main reaction products for the experimental mixture glycine + tryptophan and Tpr-Trp and Trp-Trp-Trp for tryptophan. The presence of Lunar soil both in flight and in laboratory experiments increases the reaction yield by 1.5-2.0 times. Therefore, the hypothesis concerning the possibility of safe delivery of peptides and amino acids required for the emergence of life and associated with mineral have got yet another approval.  相似文献   
462.
Effect of the size of rhizospheric bacterial populations on germination of seeds and development of simple terrestrial "wheat plants--rhizospheric microorganisms--artificial soil" and "wheat plants-artificial soil" systems has been studied. Experiments demonstrated that within specify ranges in the inoculate, the rhizospheric bacteria are capable of increasing the yield of germinated seeds and stimulate the growth of plantlets. Germination of seeds inoculated with bacteria was either stimulated, or inhibited or remained at control levels depending on the amount of bacteria. Plant biomass growth and total photoassimilation has been found to depend on the amount of bacteria on the plant roots: the higher the amount of bacteria on plant roots, the smaller is the biomass of plants but the total photoassimilation is, higher. Thus, depending on the amount of bacteria on the roots of plants the system either increases the biomass of plants or increases the total photoassimilation, i.e. "pumps" carbon through itself involving bacteria. Grant numbers: N99-04-96017, N15.  相似文献   
463.
The ultimate goal of a comprehensive life detection strategy is never to miss life when we encounter it. To accomplish this goal, we must define life in universal, that is, non-Earthcentric, measurable terms. Next, we must understand the nature of biosignatures observed from the measured parameters of life. And finally, we must have a clear idea of the end-member states for the search--what does life, past life, or no life look like (in terms of the measured parameters) at multiple spatial and temporal scales? If we can approach these problems both in the laboratory and in the field on Earth, then we have a chance of being able to detect life elsewhere in our solar system. What are the required limits of detection at each of those scales? What spatial, spectral, and temporal resolutions are necessary to detect life? These questions are actively being investigated in our group, and in this report, we present our strategy and approach to non-Earthcentric life detection.  相似文献   
464.
Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers.  相似文献   
465.
Eichler D  Beskin G 《Astrobiology》2001,1(4):489-493
We propose using large Air Cerenkov telescopes (ACTs) to search for optical, pulsed signals from extraterrestrial intelligence. Such dishes collect tens of photons from a nanosecond-scale pulse of isotropic equivalent power of tens of solar luminosities at a distance of 100 pc. The field of view for giant ACTs can be on the order of 10 square degrees, and they will be able to monitor 10-100 stars simultaneously for nanosecond pulses of about 6th magnitude or brighter. Using the Earth's diameter as a baseline, orbital motion of the planet could be detected by timing the pulse arrivals.  相似文献   
466.
Following an enthusiastic start in 1985, ESA's life support technology development programme was re-assessed in the mid- to late-1990s to reflect the strong reduction in European manned space ambitions which occurred at that time. Further development was essentially restricted to activities that could constitute ISS upgrades or enhancements, or support ISS utilisation/operations, together with a single, limited, activity (MELISSA) aimed at bioregenerative life support, in the continuing hope that there might be "life after Station". The paper describes the current status of these activities and summarises the main priorities for future development that were identified at the April 1999 Workshop on Advanced Life Support.  相似文献   
467.
Cometary nuclei consist of ices intermixed with dust grains and are thought to be the least modified solar system bodies remaining from the time of planetary formation. Flyby missions to Comet P/Halley in 1986 showed that cometary dust is extremely rich in organics (∼50% by mass). However, this proportion appears to be variable among different comets. In comparison with the CI-chondritic abundances, the volatile elements H, C, and N are enriched in cometary dust indicating that cometary solid material is more primitive than CI-chondrites. Relative to dust in dense molecular clouds, bulk cometary dust preserves the abundances of C and N, but exhibits depletions in O and H. In most cases, the carbonaceous component of cometary particles can be characterized as a multi-component mixture of carbon phases and organic compounds. Cluster analysis identified a few basic types of compounds, such as elemental carbon, hydrocarbons, polymers of carbon suboxide and of cyanopolyynes. In smaller amounts, polymers of formaldehyde, of hydrogen cyanide and various unsaturated nitriles also are present. These compositionally simple types, probably, are essential "building blocks", which in various combinations give rise to the variety of involatile cometary organics. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
468.
This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center  相似文献   
469.
Titan, the largest satellite of Saturn, with a dense atmosphere very rich in organics, and many couplings in the various parts of its "geofluid", is a reference for studying prebiotic chemistry on a planetary scale. New data have been obtained from experiments simulating this organic chemistry (gas and aerosol phases), within the right ranges of temperature and a careful avoiding of any chemical contamination. They show a very good agreement with the observational data, demonstrating for the first time the formation of all the organic species already detected in Titan atmosphere including, at last, C4N2, together with many other species not yet detected in Titan. This strongly suggests the presence of more complex organics in Titan's atmosphere and surface, including high molecular weight polyynes and cyanopolyynes. The NASA-ESA Cassini-Huygens mission has been successfully launched in October 1997. The Cassini spacecraft will reach the Saturn system in 2004 and become an orbiter around Saturn, while the Huygens probe will penetrate into Titan's atmosphere. In situ measurements, in particular from Huygens GC-MS and ACP instruments, will provide a detailed analysis of the organics present in the air, aerosols, and surface. This very ambitious mission should yield much information of crucial importance for our knowledge of the complexity of Titan's chemistry, and, more generally for the field of exobiology.  相似文献   
470.
EUVITA is a set of 8 extreme UV normal incidence imaging telescopes, each of them sensitive in a narrow band (λ/Δλ = 15 to 80), centered at wavelengths between 50 and 175 Å. Each telescope has an effective area of a few cm2; a field of view of 1.2° and a spatial resolution of 10 arcsec.

EUVITA will be flown on the Russian mission SPECTRUM X-G. This satellite will be launched in a highly eccentric orbit with a period of 4 days, allowing long, uninterrupted observations (e.g. 105 seconds). EUVITA's narrow spectral bands allow the measurement of source parameters such as temperature or power law index as well as interstellar absorption, and will resolve groups of strong lines emitted by optically thin hot plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号