首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2461篇
  免费   29篇
  国内免费   13篇
航空   980篇
航天技术   908篇
综合类   12篇
航天   603篇
  2022年   13篇
  2021年   27篇
  2019年   24篇
  2018年   73篇
  2017年   61篇
  2016年   49篇
  2015年   20篇
  2014年   78篇
  2013年   92篇
  2012年   71篇
  2011年   137篇
  2010年   102篇
  2009年   146篇
  2008年   148篇
  2007年   77篇
  2006年   63篇
  2005年   76篇
  2004年   78篇
  2003年   81篇
  2002年   56篇
  2001年   75篇
  2000年   39篇
  1999年   47篇
  1998年   52篇
  1997年   49篇
  1996年   41篇
  1995年   56篇
  1994年   34篇
  1993年   38篇
  1992年   50篇
  1991年   13篇
  1990年   16篇
  1989年   41篇
  1988年   19篇
  1987年   16篇
  1986年   13篇
  1985年   60篇
  1984年   51篇
  1983年   41篇
  1982年   41篇
  1981年   56篇
  1980年   34篇
  1979年   16篇
  1978年   17篇
  1977年   9篇
  1976年   16篇
  1975年   15篇
  1974年   12篇
  1971年   7篇
  1969年   7篇
排序方式: 共有2503条查询结果,搜索用时 15 毫秒
141.
Green  J.L.  Benson  R.F.  Fung  S.F.  Taylor  W.W.L.  Boardsen  S.A.  Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.  相似文献   
142.
Tobias  S.M.  Weiss  N.O. 《Space Science Reviews》2000,94(1-2):153-160
The 11–year solar activity cycle is magnetic in origin and is responsible for small changes in solar luminosity and the modulation of the solar wind. The terrestrial climate exhibits much internal variability supporting oscillations with many frequencies. The direct effect of changing solar irradiance in driving climatic change is believed to be small, and amplification mechanisms are needed to enhance the role of solar variability. In this paper we demonstrate that resonance may play a crucial role in the dynamics of the climate system, by using the output from a nonlinear solar dynamo model as a weak input to a simplified climate model. The climate is modelled as oscillating about two fixed points (corresponding to a warm and cold state) with the weak chaotically modulated solar forcing on average pushing the solution towards the warm state. When a typical frequency of the input is similar to that of the chaotic climate system then a dramatic increase in the role of the solar forcing is apparent and complicated intermittent behaviour is observed. The nonlinear effects are subtle however, and forcing that on average pushes the solution towards the warm state may lead to increased intervals of oscillation about either state. Owing to the intermittent nature of the timeseries, analysis of the relevant timeseries is shown to be non-trivial.  相似文献   
143.
We describe a numerical integral-projection method used by the authors for the approximate solution of systems of interrelated two-dimensional linear boundary-value problems in mechanics of composite shell systems. The method is based on discretization in each shell substructure of a two-dimensional problem along one of coordinates using a projection-grid variant of the Galerkin-Petrov method and its subsequent transformation to a system of ordinary differential equations; by integration and introduction of sought functions as unknown derivatives, the system is reduced to a system of integral equations being solved by the method of mechanical quadratures. The method is characterized by the fact that its application requires no additional conditions of conformity with discretization parameters of substructures being mated.  相似文献   
144.
The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS.  相似文献   
145.
146.
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards ( Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC’s SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a – 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.  相似文献   
147.
It is known that a wireless sensor network uses some sort of sensors to detect a physical quantity of interest, in general. The wireless sensor network is a potential tool for exploring the difficult-to-access area on the earth and the concept may be extended to space applications in future. Recently, lunar water has been detected by a few lunar missions using remote sensing techniques. The lunar water is expected to be in the form of ice at very low temperatures of permanently dark regions on the moon. To support the remote observations and also to find out potential ice bearing sites on the moon, in-situ measurement of the lunar ice is essential. However, a rover may not be able to reach the permanently shadowed regions due to terrain irregularity. One possibility to access such areas is to use a wireless sensor network on the lunar surface.  相似文献   
148.
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25–40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.  相似文献   
149.
Parameterization of dynamical and thermal effects of stationary orographic gravity waves (OGWs) generated by the Earth’s surface topography is incorporated into a numerical model of general circulation of the middle and upper atmosphere. Responses of atmospheric general circulation and characteristics of planetary waves at altitudes from the troposphere up to the thermosphere to the effects of OGWs propagating from the earth surface are studied. Changes in atmospheric circulation and amplitudes of planetary waves due to variations of OGW generation and propagation in different seasons are considered. It is shown that during solstices the main OGW dynamical and heat effects occur in the middle atmosphere of winter hemispheres, where changes in planetary wave amplitudes due to OGWs may reach up to 50%. During equinoxes OGW effects are distributed more homogeneously between northern and southern hemispheres.  相似文献   
150.
Land subsidence, due to natural or anthropogenic processes, causes significant costs in both economic and structural aspects. That part of subsidence observed most is the result of human activities, which relates to underground exploitation. Since the gradual surface deformation is a consequence of hydrocarbon reservoirs extraction, the process of displacement monitoring is amongst the petroleum industry priorities. Nowadays, Differential SAR Interferometry, in which satellite images are utilized for elevation change detection and analysis – in a millimetre scale, has proved to be a more real-time and cost-effective technology in contrast to the traditional surveying method. In this study, surface displacements in Aghajari oil field, i.e. one of the most industrious Iranian hydrocarbon sites, are being examined using radar observations. As in a number of interferograms, the production wells inspection reveals that surface deformation signals develop likely due to extraction in a period of several months. In other words, different subsidence or uplift rates and deformation styles occur locally depending on the geological conditions and excavation rates in place.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号