首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8088篇
  免费   42篇
  国内免费   30篇
航空   3622篇
航天技术   2826篇
综合类   30篇
航天   1682篇
  2021年   91篇
  2019年   61篇
  2018年   190篇
  2017年   136篇
  2016年   131篇
  2015年   60篇
  2014年   202篇
  2013年   251篇
  2012年   245篇
  2011年   376篇
  2010年   275篇
  2009年   402篇
  2008年   435篇
  2007年   263篇
  2006年   194篇
  2005年   220篇
  2004年   218篇
  2003年   244篇
  2002年   177篇
  2001年   251篇
  2000年   150篇
  1999年   179篇
  1998年   219篇
  1997年   142篇
  1996年   192篇
  1995年   229篇
  1994年   204篇
  1993年   137篇
  1992年   176篇
  1991年   56篇
  1990年   58篇
  1989年   162篇
  1988年   74篇
  1987年   70篇
  1986年   72篇
  1985年   217篇
  1984年   178篇
  1983年   132篇
  1982年   139篇
  1981年   236篇
  1980年   75篇
  1979年   54篇
  1978年   64篇
  1977年   45篇
  1975年   61篇
  1974年   47篇
  1973年   38篇
  1972年   41篇
  1971年   41篇
  1970年   40篇
排序方式: 共有8160条查询结果,搜索用时 15 毫秒
131.
A general expression of the error probability on an M-ary coherent phase-shift-keyed (MCPSK) signal purturbed by a noisy reference carrier, multiple interferences, and additive Gaussian noise is presented taking into account the frequencey divider in the carrier recovery circuit. First, a new expression for the probability density function (pdf) of the phase of a composite wave of signal, multiple interferences, and additive Gaussian noise is derived. Then this result and a pdf of the phase error modified from the Tikhonov distribution are used to obtain the erro probability of an MCPSK detector. In addition, the comparison between the error probabilities with and without the frequency divider is given, and it is found that the estimation is more pessimistic when the frequency divider is included.  相似文献   
132.
A Gaussian Mixture PHD Filter for Jump Markov System Models   总被引:11,自引:0,他引:11  
The probability hypothesis density (PHD) filter is an attractive approach to tracking an unknown and time-varying number of targets in the presence of data association uncertainty, clutter, noise, and detection uncertainty. The PHD filter admits a closed-form solution for a linear Gaussian multi-target model. However, this model is not general enough to accommodate maneuvering targets that switch between several models. In this paper, we generalize the notion of linear jump Markov systems to the multiple target case to accommodate births, deaths, and switching dynamics. We then derive a closed-form solution to the PHD recursion for the proposed linear Gaussian jump Markov multi-target model. Based on this an efficient method for tracking multiple maneuvering targets that switch between a set of linear Gaussian models is developed. An analytic implementation of the PHD filter using statistical linear regression technique is also proposed for targets that switch between a set of nonlinear models. We demonstrate through simulations that the proposed PHD filters are effective in tracking multiple maneuvering targets.  相似文献   
133.
Solar sails have much attracted the interest of the scientific community as an advanced low-thrust propulsion means capable of promoting the reduction of mission costs and the feasibility of missions that are not practically accessible via conventional propulsion because of their large ΔV requirements. To reduce the overall flight time, a given mission is usually analyzed in the framework of a minimum time control problem, with the employment of a continuous steering law. The aim of this paper is to investigate the performance achievable with a piecewise-constant steering law whose aim is to substantially reduce the complex task of reorienting the sail over the whole mission. Unlike previous studies based on direct approaches, here we use an indirect method to optimally select the sail angle within a set of prescribed values. The corresponding steering law translates the results available for continuous controls to the discrete case, and is able of producing trajectories that are competitive in performance with the optimum variable direction program.  相似文献   
134.
The Lunar Gravity Ranging System (LGRS) flying on NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission measures fluctuations in the separation between the two GRAIL orbiters with sensitivity below 0.6 microns/Hz1/2. GRAIL adapts the mission design and instrumentation from the Gravity Recovery and Climate Experiment (GRACE) to a make a precise gravitational map of Earth’s Moon. Phase measurements of Ka-band carrier signals transmitted between spacecraft with line-of-sight separations between 50 km to 225 km provide the primary observable. Measurements of time offsets between the orbiters, frequency calibrations, and precise orbit determination provided by the Global Positioning System on GRACE are replaced by an S-band time-transfer cross link and Deep Space Network Doppler tracking of an X-band radioscience beacon and the spacecraft telecommunications link. Lack of an atmosphere at the Moon allows use of a single-frequency link and elimination of the accelerometer compared to the GRACE instrumentation. This paper describes the implementation, testing and performance of the instrument complement flown on the two GRAIL orbiters.  相似文献   
135.
The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10-19 and 10-9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the Sun, to Jupiter and to its satellites, to study its interaction with the Galilean satellites and the Jovian magnetosphere. Surface phenomena of the satellites (like albedo variations), which might be effects of meteoroid impacts will be compared with the dust environment. Electric charges of particulate matter in the magnetosphere and its consequences will be studied; e.g., the effects of the magnetic field on the trajectories of dust particles and fragmentation of particles due to electrostatic disruption. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 106 times higher than that of previous in-situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits s-1 in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given.  相似文献   
136.
The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the radio frequency (RF) noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferritecore radio frequency antenna ( 100 Hz to 100 kHz) and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).  相似文献   
137.
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.  相似文献   
138.
The Gram-Schmidt orthogonalization (GSO) algorithm has excellent numerical performance and is readily applicable to systolic implementations such as in a field of adaptive cancellation systems. A modified GSO algorithm for a fully adaptive array is proposed and computer simulations show that the proposed algorithm gives superior performance. A systolic implementation of the proposed GSO algorithm for fully adaptive array is presented. A feedback mode GSO algorithm for use with analog weights is also presented and has been shown to have excellent performance in the presence of weight errors  相似文献   
139.
本文介绍了俄国1420,1430,1450等铝锂合金的研制过程和性能,并与西方类似合金进行了对比,同时还列举了铝锂合金在战斗机、运输机、民航机和直升机上作为结构元件和应用情况。  相似文献   
140.
A remarkable streaming beam-like particle event of 60 keV-5 MeV ions and of 38–315 keV electrons has been reported previously. This event has been associated with the passage of a Coronal Mass Ejection (CME) over the Ulysses spacecraft on June 9–13, 1993. At this time, the spacecraft was located at 4.6 AU from the sun and at an heliolatitude of 32° south. It was proposed (Armstrong et al., 1994) that the particle injection source could have been of coronal origin. In this study, we analyse the solar activity during this period. We identify a region of solar radio noise storms in the corona and in particular, a flare on June 7 that presents all the required characteristics to produce the hot plasma beam observed in the interplanetary medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号