首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7120篇
  免费   18篇
  国内免费   22篇
航空   3176篇
航天技术   2467篇
综合类   21篇
航天   1496篇
  2021年   79篇
  2019年   46篇
  2018年   168篇
  2017年   110篇
  2016年   112篇
  2015年   56篇
  2014年   188篇
  2013年   243篇
  2012年   226篇
  2011年   346篇
  2010年   239篇
  2009年   347篇
  2008年   379篇
  2007年   228篇
  2006年   162篇
  2005年   194篇
  2004年   191篇
  2003年   215篇
  2002年   150篇
  2001年   224篇
  2000年   128篇
  1999年   164篇
  1998年   192篇
  1997年   113篇
  1996年   173篇
  1995年   206篇
  1994年   193篇
  1993年   122篇
  1992年   151篇
  1991年   51篇
  1990年   50篇
  1989年   142篇
  1988年   65篇
  1987年   60篇
  1986年   69篇
  1985年   192篇
  1984年   145篇
  1983年   112篇
  1982年   115篇
  1981年   215篇
  1980年   52篇
  1979年   47篇
  1978年   52篇
  1977年   42篇
  1975年   52篇
  1974年   38篇
  1973年   37篇
  1972年   35篇
  1971年   35篇
  1970年   39篇
排序方式: 共有7160条查询结果,搜索用时 16 毫秒
821.
Throughout the evolution process, Earth's magnetic field (MF, about 50 microT) was a natural component of the environment for living organisms. Biological objects, flying on planned long-term interplanetary missions, would experience much weaker magnetic fields, since galactic MF is known to be 0.1-1 nT. However, the role of weak magnetic fields and their influence on functioning of biological organisms are still insufficiently understood, and is actively studied. Numerous experiments with seedlings of different plant species placed in weak magnetic field have shown that the growth of their primary roots is inhibited during early germination stages in comparison with control. The proliferative activity and cell reproduction in meristem of plant roots are reduced in weak magnetic field. Cell reproductive cycle slows down due to the expansion of G1 phase in many plant species (and of G2 phase in flax and lentil roots), while other phases of cell cycle remain relatively stable. In plant cells exposed to weak magnetic field, the functional activity of genome at early pre-replicate period is shown to decrease. Weak magnetic field causes intensification of protein synthesis and disintegration in plant roots. At ultrastructural level, changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells were observed in pea roots exposed to weak magnetic field. Mitochondria were found to be very sensitive to weak magnetic field: their size and relative volume in cells increase, matrix becomes electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to weak magnetic field show Ca2+ over-saturation in all organelles and in cytoplasm unlike the control ones. The data presented suggest that prolonged exposures of plants to weak magnetic field may cause different biological effects at the cellular, tissue and organ levels. They may be functionally related to systems that regulate plant metabolism including the intracellular Ca2+ homeostasis. However, our understanding of very complex fundamental mechanisms and sites of interactions between weak magnetic fields and biological systems is still incomplete and still deserve strong research efforts.  相似文献   
822.
The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period.  相似文献   
823.
Theories of cellular radiation sensitivity that preclude a significant role for cellular repair processes in the final biological expression of cellular damage induced by ionizing radiation are unsound. Experiments are discussed here in which the cell-cycle dependency of the repair deficiency of the S/S variant, of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, 20Ne, 28Si, 40Ar, 56Fe and 93Nb. Evidence from those studies, which will be described in detail elsewhere, provide support for the notion that as the linear energy transfer (LET infinity) of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until effectively it is eliminated around 500 keV/micrometer. In the region of the latter LET infinity value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism (repair) does not influence cell survival. The expression of this phenomenon among different cell types and tissues will depend upon the actual repair systems involved and other considerations.  相似文献   
824.
The effect of elevated temperatures of 35 and 45 degrees C (at the intensities of photosynthetically active radiation 322, 690 and 1104 micromoles m-2 s-1) on the photosynthesis, respiration, and qualitative and quantitative composition of the volatiles emitted by wheat (Triticum aestuvi L., cultivar 232) crops was investigated in growth chambers. Identification and quantification of more than 20 volatile compounds (terpenoids--alpha-pinene, delta 3 carene, limonene, benzene, alpha- and trans-caryophyllene, alpha- and gamma-terpinene, their derivatives, aromatic hydrocarbons, etc.) were conducted by gas chromatograph/mass spectrometry. Under light intensity of 1104 micromoles m-2 s-1 heat resistance of photosynthesis and respiration increased at 35 degrees C and decreased at 45 degrees C. The action of elevated temperatures brought about variations in the rate and direction of the synthesis of volatile metabolites. The emission of volatile compounds was the greatest under a reduced irradiation of 322 micromoles m-2 s-1 and the smallest under 1104 micromoles m-2 s-1 at 35 degrees C. During the repair period, the contents and proportions of volatile compounds were different from their initial values, too. The degree of disruption and the following recovery of the functional state depended on the light intensity during the exposure to elevated temperatures. The investigation of the atmosphere of the growth chamber without plants has revealed the substances that were definitely technogenic in origin: tetramethylurea, dimethylsulfide, dibutylsulfide, dibutylphthalate, and a number of components of furan and silane nature.  相似文献   
825.
Transformation of the mechanical input in the chain: acceleration of otolithic membrane (OM)-displacement of the OM gel layer -deflection of hair cell bundle (HCB) -deformation of the system of tip-links- formation of temporal pattern of polarization was studied using simplified analytical models of these stages of conversion of mechanical stimulus into the HCB electrical response. The process of transformation of information in this chain was considered for two extreme cases of OM gel-HCB interaction: 1) the HCBs exactly follow the gel displacement; 2) stiff stereocilia and weak surrounding gel allow the relative motion of the bundle with regard to the gel. The analysis of a simplified model of cell polarization based on threshold triggering of the HCB tip-links allows to hypothesize that spatially nonhomogeneous HCB structure with a set of stereocilia of varying heights is designed to perceive spatially nonhomogeneous gel displacements caused by external acceleration. Thus, the HCB-OM gel interaction in the first case leads to formation of temporal pattern of depolarization that corresponds to the temporal pattern of gel displacement. In the second case the kinetics of depolarization reflects time dependence of gel displacement velocity.  相似文献   
826.
Ohne Zusammenfassung
In memoriam Julius Bartels
  相似文献   
827.
Most of the southern hemisphere of Mars is densely cratered and stands 1–3 km above the topographic datum. The northern hemisphere is more sparsely cratered and elevations are generally below the datum. A broad rise, the Tharsis bulge, centered at 14° S, 101° W, is 8000 km across and 10 km above the datum at its summit. The densely cratered terrain has two main components; very ancient crust, nearly saturated with large craters, and younger intercrater plains. In many areas the older unit is fractured and extensively dissected by small channels. The younger intercrater plains are distinctly layered in places and less dissected, less fractured, and less cratered. Both units probably date from very early in the planet's history. Cratered plains cover much of the northern hemisphere and are highly variegated. Those around the large volcanoes are covered with numerous volcanic flows whereas in other areas the plains are featureless except for craters and lunar mare-like ridges. Between 40° N and 60° N the plains are complex with various kinds of striped and patterned ground, low escarpments, and isolated irregularly shaped mesas. Their peculiar morphology has been attributed, in part, to the repeated deposition and removal of volatile-rich debris layers. Along the boundary between the northern plains and the densely cratered terrain to the south, the plains and cratered terrain complexly inter-finger. The old terrain forms the high ground and appears to have undergone mass wasting on a large scale. In several areas, particularly south of Chryse Planitia, the old, cratered surface has collapsed to form chaotic terrain. Large channels, tens of kilometers wide and hundreds of kilometers long, with numerous characteristics suggestive of catastrophic flooding, commonly emerge from the chaotic areas. Much of the area between 50° W and 180° W and 50° N and 50° S is cut by fractures radial to the center of the Tharsis bulge. The equatorial canyon system, Valles Marineris, is radial to the bulge and appears to have formed largely by faulting along the radial fractures, although it has also been extensively modified by various mass wasting and fluvial processes. Most but not all volcanoes are in the Tharsis and Elysium regions. The largest resemble terrestrial shield volcanoes except for scale; the edifices, flow features and calderas are all far larger than their terrestrial counterparts. Most impact craters on Mars are surrounded by layers of ejecta, each with a distil ridge. This unique morphology coupled with other surface characteristics suggests large amounts of ground ice. Layered deposits at both poles appear to be relatively young, volatile-rich, aeolian deposits. The north pole is also surrounded by a continuous belt of dunes several tens of kilometers across. In most other places, aeolian modification of the surface at a scale of several tens of meters appears slight despite annual global dust storms.  相似文献   
828.
This is an analysis of the experimental results to study the metastable phase formation while crystallization of binary metal melts in microgravity and quasi-isostatic (uniform) compression takes place. The alloy system PbSn serves as an illustration  相似文献   
829.
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.  相似文献   
830.
As a part of the global plasma environment study of Mars and its response to the solar wind, we have analyzed a peculiar case of the subsolar energetic neutral atom (ENA) jet observed on June 7, 2004 by the Neutral Particle Detector (NPD) on board the Mars Express satellite. The “subsolar ENA jet” is generated by the interaction between the solar wind and the Martian exosphere, and is one of the most intense sources of ENA flux observed in the vicinity of Mars. On June 7, 2004 (orbit 485 of Mars Express), the NPD observed a very intense subsolar ENA jet, which then abruptly decreased within ∼10 sec followed by quasi-periodic (∼1 min) flux variations. Simultaneously, the plasma sensors detected a solar wind structure, which was most likely an interplanetary shock surface. The abrupt decrease of the ENA flux and the quasi-periodic flux variations can be understood in the framework of the global response of the Martian plasma obstacle to the interplanetary shock. The generation region of the subsolar ENA jet was pushed towards the planet by the interplanetary shock; and therefore, Mars Express went out of the ENA jet region. Associated global vibrations of the Martian plasma obstacle may have been the cause of the quasi-periodic flux variations of the ENA flux at the spacecraft location.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号