首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7118篇
  免费   16篇
  国内免费   21篇
航空   3175篇
航天技术   2463篇
综合类   21篇
航天   1496篇
  2021年   78篇
  2019年   46篇
  2018年   167篇
  2017年   110篇
  2016年   112篇
  2015年   55篇
  2014年   188篇
  2013年   242篇
  2012年   226篇
  2011年   346篇
  2010年   239篇
  2009年   347篇
  2008年   379篇
  2007年   228篇
  2006年   162篇
  2005年   194篇
  2004年   191篇
  2003年   215篇
  2002年   150篇
  2001年   224篇
  2000年   128篇
  1999年   164篇
  1998年   192篇
  1997年   113篇
  1996年   173篇
  1995年   206篇
  1994年   193篇
  1993年   122篇
  1992年   151篇
  1991年   51篇
  1990年   50篇
  1989年   142篇
  1988年   65篇
  1987年   60篇
  1986年   68篇
  1985年   192篇
  1984年   145篇
  1983年   112篇
  1982年   115篇
  1981年   215篇
  1980年   52篇
  1979年   47篇
  1978年   52篇
  1977年   42篇
  1975年   52篇
  1974年   38篇
  1973年   37篇
  1972年   35篇
  1971年   35篇
  1970年   39篇
排序方式: 共有7155条查询结果,搜索用时 718 毫秒
361.
SWE,a comprehensive plasma instrument for the WIND spacecraft   总被引:1,自引:0,他引:1  
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.  相似文献   
362.
The radial component of the magnetic field at Ulysses, over latitudes from –10° to –45° and distances from 5.3 to 3.8 AU, compares very well with corresponding measurements being made by IMP-8 in the ecliptic at 1AU. There is little, if any, evidence of a latitude gradient. Variances in the field, normalized to the square of the field magnitude, show little change with latitude in variations in the magnitude but a large increase in the transverse field variations. The latter are shown to be caused by the presence of large amplitude, long period Alfvénic fluctuations. This identification is based on the close relation between the magnetic field and velocity perturbations including the effect of anisotropy in the solar wind pressure. The waves are propagating outward from the Sun, as in the ecliptic, but variance analysis indicates that the direction of propagation is radial rather than field-aligned. A significant long-period component of 10 hours is present.  相似文献   
363.
We report the discovery that for latitudes above 40°S, the observed recurring modulation of cosmic rays and anomalous nuclei occurs without the detection byUlysses of the solar wind velocity and magnetic field recurring enhancements that have, heretofore at lower latitudes, defined corotating interaction regions—i.e., the mechanism producing the recurring intensity variations >40°S appears to be located beyond the radial range ofUlysses.  相似文献   
364.
Between its launch in October 1990 and the end of 1993, approximately 160 fast collisionless shock waves were observed in the solar wind by the Ulysses space probe. During the in-ecliptic part of the mission, to February 1992, the observed shock waves were first caused mainly by solar transient events following the solar maximum and the reorganisation of the large scale coronal fields. With the decay in solar activity, relatively stable Corotating Interaction Regions (CIRs) were observed betwen 3 and 5.4 AU, each associated with at least one forwardreverse shock pair. During the out-of-ecliptic phase of the orbit, from February 1992 onwards, CIRs and shock pairs associated with them continued to dominate the observations. From July 1992, Ulysses encountered the fast solar wind flow from the newly developed southern polar coronal hole, and from May 1993 remained in the unipolar magnetic region associated with this coronal hole. At latitudes beyond 30°, CIRs were associated almost exclusively with reverse shocks only. A comprehensive list of shock waves identified in the magnetic field and solar wind plasma data from Ulysses is given in Table 1. The principal characteristics were determined mainly from the magnetic field data. General considerations concerning the determination of shock characteristics are outlined in the Introduction.  相似文献   
365.
This study presents a methodology for specifying a neural controller for a system about which no a priori model information is available. The neural design presumes that a finite duration input/output (I/O) histogram on the system is available. The design procedure extracts from the histogram sufficient information to specify the neural feedback controller. The resultant controller will drive the system along a general output reference profile (unknown during the design). The resultant controller also exhibits the capability of disturbance rejection and the capacity to stabilize unstable plants  相似文献   
366.
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components.  相似文献   
367.
The primary scientific objective of the ROSAT mission is to perform the first all sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. Consequently a large number of new sources (> 105) will be discovered and located with an accuracy of 1 arcmin. After completion of the survey which will take about half a year the instrument will be used for detailed observations of selected targets.The X-ray telescope consists of a fourfold nested Wolter type I mirror system with 80 cm aperture and 240 cm focal length, and three focal plane detectors. In the baseline version these will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 20 × 20.  相似文献   
368.
We report photometric observations of the optical counterpart of the X-ray source 2S0921-630. The data, obtained at the South African Astronomical Observatory during 3 weeks in 1980 and 1981, are consistent with a 17.9 day periodic modulation of the flux in the B band. Correlated variability of the (B-V) and (U-B) colour indices with the B mag. is demonstrated and quantified. The observed B mag. and colours at maximum and minimum light are used to compute some of the system parameters. A model of 2S0921-630 is proposed in terms of a binary system in which the variable inclination of a luminous accretion disc produces the long-term modulation of the optical flux.  相似文献   
369.
370.
The theory of shock acceleration of energetic particles is briefly discussed and reviewed with an emphasis on clarifying the apparent distinction between the V × B and Fermi mechanisms. Attention is restricted to those situations in which the energetic particles do not themselves influence the given shock structure. In particular, application of the theory to the acceleration of energetic particles in corotating interaction regions (CIR) in the solar wind is presented. Here particles are accelerated at the forward and reverse shocks which bound the CIR by being compressed between the shock fronts and magnetic irregularities upstream from the shocks, or by being compressed between upstream irregularities and those downstream from the shocks. Particles also suffer adiabatic deceleration in the expanding solar wind, an effect not included in previous shock models for acceleration in CIRs. The model is able to account for the observed exponential spectra at Earth, the observed behavior of the spectra with radial distance, the observed radial gradients in the intensity, and the observed differences in the intensity and spectra at the forward and reverse shocks.Calculations and resulting energy spectra are also presented for shock acceleration of energetic particles in large solar flare events. Based on the simplifying assumption that the shock evolves as a spherically symmetric Sedov blast wave, the calculation yields the time-integrated spectrum of particles initially injected at the shock which eventually escape ahead of the shock into interplanetary space. The spectra are similar to those observed at Earth. Finally further applications are suggested.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号