首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8891篇
  免费   34篇
  国内免费   24篇
航空   4166篇
航天技术   3048篇
综合类   31篇
航天   1704篇
  2021年   87篇
  2019年   60篇
  2018年   182篇
  2017年   123篇
  2016年   128篇
  2015年   62篇
  2014年   213篇
  2013年   255篇
  2012年   254篇
  2011年   373篇
  2010年   276篇
  2009年   401篇
  2008年   452篇
  2007年   266篇
  2006年   199篇
  2005年   237篇
  2004年   229篇
  2003年   278篇
  2002年   188篇
  2001年   300篇
  2000年   172篇
  1999年   211篇
  1998年   246篇
  1997年   151篇
  1996年   230篇
  1995年   274篇
  1994年   260篇
  1993年   150篇
  1992年   209篇
  1991年   75篇
  1990年   79篇
  1989年   195篇
  1988年   86篇
  1987年   77篇
  1986年   88篇
  1985年   246篇
  1984年   196篇
  1983年   164篇
  1982年   175篇
  1981年   263篇
  1980年   71篇
  1979年   64篇
  1978年   69篇
  1977年   60篇
  1975年   80篇
  1974年   58篇
  1973年   46篇
  1972年   61篇
  1971年   51篇
  1970年   50篇
排序方式: 共有8949条查询结果,搜索用时 46 毫秒
851.
In order to achieve perfect positioning of their lamellae for spore dispersal, fruiting bodies of higher fungi rely on the omnipresent force gravity. Only accurate negatively gravitropic orientation of the fruiting body cap will guarantee successful reproduction. A spaceflight experiment during the STS-55 Spacelab mission in 1993 confirmed that the factor gravity is employed for spatial orientation. Most likely every hypha in the transition zone between the stipe and the cap region is capable of sensing gravity. Sensing presumably involves slight sedimentation of nuclei which subsequently causes deformation of the net-like arrangement of F-actin filament strands. Hyphal elongation is probably driven by hormone-controlled activation and redistribution of vesicle traffic and vesicle incorporation into the vacuoles and cell walls to subsequently cause increased water uptake and turgor pressure. Stipe bending is achieved by way of differential growth of the flanks of the upper-most stipe region. After reorientation to a horizontal position, elongation of the upper flank hyphae decreases 40% while elongation of the lower flank slightly increases. On the cellular level gravity-stimulated vesicle accumulation was observed in hyphae of the lower flank.  相似文献   
852.
Future space exploration may involve communications between spacecraft moving at relativistic velocities. One of the significant problems associated with such communication is spectral distortion of signals which are propagated between relativistic frames. This distortion is generated by both changing propagation distances and purely relativistic electromagnetic field transformations. In this paper a linear integral transformation is formulated for relating the Fourier spectra of the source antenna excitation current and the resulting incident electric field at the receiving antenna. The kernel of the transformation is evaluated for the case of a steerable source antenna tracking on the advanced receiver position. The transformation is then applied to the case of an ideal thin-wire half-wave dipole source antenna excited by a narrowband, double-sideband modulated current. The specific distortions of spectral spreading and translation are then related to increased bandwidth and upper cutoff frequency requirements of receiving systems in relativistic applications.  相似文献   
853.
We address the problem of detection of targets obscured by a forest canopy using an ultrawideband (UWB) radar. The forest clutter observed in the radar imagery is a highly impulsive random process that is more accurately modeled with the recently proposed class of alpha-stable processes as compared with Gaussian, Weibull, and K-distribution models. With this more accurate model, segmentation is performed on the imagery into forest and clear regions. Further, a region-adaptive symmetric alpha stable (SαS) constant false-alarm rate (CFAR) detector is introduced and its performance is compared with the Weibull and Gaussian CFAR detectors. The results on real data show that the SαS CFAR performs better than the Weibull and Gaussian CFAR detectors in detecting obscured targets  相似文献   
854.
The dependence of the wave resistance coefficients for planar periodic reliefs on the similarity parameters is investigated. It is proved that the wave resistance coefficients of the infinite reliefs and their finite analogs in the case of the whole wave numbers coincide, whereas in the case of the fractional wave numbers they differ.  相似文献   
855.
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards ( Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC’s SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a – 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.  相似文献   
856.
857.
858.
A problem on low vibrations of a thin spherical shell is considered. A solid of finite dimensions is discretely attached to the shell by means of an elastic rod system. The calculation examples are presented.  相似文献   
859.
Magnetic effects are ubiquitous and known to be crucial in space physics and astrophysical media. We have now the opportunity to probe these effects in the outer heliosphere with the two spacecraft Voyager 1 and 2. Voyager 1 crossed, in December 2004, the termination shock and is now in the heliosheath. On August 30, 2007 Voyager 2 crossed the termination shock, providing us for the first time in-situ measurements of the subsonic solar wind in the heliosheath. With the recent in-situ data from Voyager 1 and 2 the numerical models are forced to confront their models with observational data. Our recent results indicate that magnetic effects, in particular the interstellar magnetic field, are very important in the interaction between the solar system and the interstellar medium. We summarize here our recent work that shows that the interstellar magnetic field affects the symmetry of the heliosphere that can be detected by different measurements. We combined radio emission and energetic particle streaming measurements from Voyager 1 and 2 with extensive state-of-the art 3D MHD modeling, to constrain the direction of the local interstellar magnetic field. The orientation derived is a plane ~60°–90° from the galactic plane. This indicates that the field orientation differs from that of a larger scale interstellar magnetic field, thought to parallel the galactic plane. Although it may take 7–12 years for Voyager 2 to leave the heliosheath and enter the pristine interstellar medium, the subsonic flows are immediately sensitive to the shape of the heliopause. The flows measured by Voyager 2 in the heliosheath indicate that the heliopause is being distorted by local interstellar magnetic field with the same orientation as derived previously. As a result of the interstellar magnetic field the solar system is asymmetric being pushed in the southern direction. The presence of hydrogen atoms tend to symmetrize the solutions. We show that with a strong interstellar magnetic field with our most current model that includes hydrogen atoms, the asymmetries are recovered. It remains a challenge for future works with a more complete model, to explain all the observed asymmetries by V1 and V2. We comment on these results and implications of other factors not included in our present model.  相似文献   
860.
A capillary-driven root module for plant growth in microgravity.   总被引:2,自引:0,他引:2  
A new capillary-driven root module design for growing plants in microgravity was developed which requires minimal external control. Unlike existing systems, the water supply to the capillary-driven system is passive and relies on root uptake and media properties to develop driving gradients which operate a suction-induced flow control valve. A collapsible reservoir supplies water to the porous membrane which functions to maintain hydraulic continuity. Sheet and tubular membranes consisting of nylon, polyester and sintered porous stainless steel were tested. While finer pore sized membranes allow greater range of operation, they also reduce liquid flux thereby constraining system efficiency. Membrane selection should consider both the maximum anticipated liquid uptake rate and maximum operating matric head (suction) of the system. Matching growth media water retention characteristics to the porous membrane characteristics is essential for supplying adequate liquid flux and gas exchange. A minimum of 10% air-filled porosity (AFP) was necessary for adequate aeration. The capillary-driven module maintained hydraulic continuity and proper gas exchange rates for more than 80 days in a plant growth experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号